
 

 

Integrating predictors of host condition into spatiotemporal multi-scale models of 1 

virus shedding  2 

 3 

ABSTRACT 4 

Understanding where and when pathogens occur in the environment has implications for 5 

reservoir population health and infection risk. In reservoir hosts, infection status and pathogen 6 

shedding are affected by processes interacting across different scales: from landscape features 7 

affecting host location and transmission to within-host processes affecting host immunity and 8 

infectiousness. While uncommonly done, simultaneously incorporating processes across multiple 9 

scales may improve pathogen shedding predictions. In Australia, the black flying fox (Pteropus alecto) 10 

is a natural host for the zoonotic Hendra virus, which is hypothesized to cause latent infections in bats. 11 

Re-activation and virus shedding may be triggered by poor host condition, leading to virus excretion 12 

through urine. Here, we developed a statistical modeling approach that combined data at multiple 13 

spatial and temporal scales to capture ecological and biological processes potentially affecting virus 14 

shedding. We parameterized these models using existing datasets and compared model performance 15 

to under-roost virus shedding data from 2011-2014 in 23 roosts across a 1200-km transect. Our 16 

approach enabled comparisons among multiple model structures to determine which variables at 17 

which scales are most influential for accurate predictions of virus shedding in space and time. We 18 

identified environmental predictors and temporal lags of these features that were important for 19 

determining where reservoirs are located and multiple independent proxies for reservoir condition. 20 

The best-performing multi-scale model delineated periods of low and high virus prevalence, reflecting 21 

observed shedding patterns from pooled under-roost samples. Incorporating regional indicators of 22 

food scarcity enhanced model accuracy while incorporating other stress indicators at local scales 23 

confounded this signal. This multiscale modeling approach enabled the combination of processes 24 
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from different ecological scales and identified environmental variables influencing Hendra virus 25 

shedding, highlighting how integrating data across scales may improve risk forecasts for other 26 

pathogen systems. 27 

INTRODUCTION  28 

The presence and abundance of pathogens in a location result from physical, ecological, and 29 

physiological processes occurring across multiple biological scales. Pathogens infect cells within 30 

individual hosts; pathogens are transmitted between individuals; and the geographic distribution of a 31 

host population dynamically responds to changes in regional climate and local environmental 32 

conditions, which combine to influence resource availability and feedback to affect host condition and 33 

distribution. Multi-scale models have helped identify biological scales contributing disproportionately 34 

to transmission dynamics (Orton et al. 2020, Tsao et al. 2020) and informed disease intervention and 35 

control (Guo et al. 2015). While interacting scales underpin infection dynamics observed in natural 36 

systems, there are no standard methods for incorporating multiscale processes in disease ecology. 37 

Researchers have implemented multi-scale models using various model types (dynamical, statistical) 38 

and linkages (correlational, mechanistic) between scales (Hasenauer et al. 2015, Childs et al. 2019, 39 

Kramer et al. 2019). Despite the potential for multi-scale models to offer new insights, linking spatially 40 

and temporally dynamic processes across biological scales remains challenging partly due to the data 41 

necessary to characterize feedbacks and dependencies in complex systems (Garabed et al. 2019).  42 

An illustrative example of this complexity is the interaction between individual body condition 43 

and infection, which can, in turn, impact epidemic dynamics across a population (Beldomenico et al. 44 

2008, Beldomenico and Begon 2010). While there are several condition metrics (Jakob et al. 1996, 45 

Peig and Green 2009), body condition generally describes the energetic status of an individual with 46 

direct implications for fitness (survival & reproduction). While host condition responds to processes 47 

happening at several scales, most studies investigating links between body condition and infection 48 

status find negative associations (Sanchez et al. 2018). Animals in poor body condition (e.g., from low 49 
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resource input) may divert energy from immune responses needed to prevent or control infections 50 

(Plowright et al. 2024). For example, poor nutrition is associated with an increased amount and 51 

duration of virus shedding in a songbird species (Owen et al. 2021). Infections can also reduce host 52 

condition through anorexia or investment in immunity (Kyriazakis et al. 1998, Reeder et al. 2012, 53 

Verant et al. 2014).  54 

Many wildlife diseases lack sufficient temporal and spatial sampling to develop multi-scale 55 

models. However, decades of Hendra virus research make it a valuable system for building multi-scale 56 

models and testing key hypotheses. Hendra virus (HeV) is a Henipavirus that circulates in flying fox 57 

populations in eastern Australia, and the virus is shed and transmitted through urine. Because the 58 

virus can spill over to domesticated horses and humans (Murray et al. 1995, Rogers et al. 1996), 59 

extensive research efforts have been carried out to identify drivers of HeV in wild flying fox 60 

populations (Field et al. 2001). Black flying foxes (Pteropus alecto) are a primary reservoir for HeV 61 

(HeV-g1) and are likely source of the majority of spillover cases (Edson et al. 2015, Annand et al. 2022, 62 

Peel et al. 2022). Research on HeV shows complex transmission patterns with significant variation in 63 

the prevalence and timing of HeV shedding (Plowright et al. 2015). Once shed, HeV is not viable in the 64 

environment for more than a day (Fogarty et al. 2008, Martin et al. 2015), so identifying where 65 

reservoir hosts are on the landscape is essential for understanding virus shedding patterns. The 66 

occurrence and abundance of black flying foxes have previously been linked to differences in virus 67 

shedding (Paez et al. 2017); however the high mobility of flying foxes makes it challenging to match 68 

viral prevalence and population data in space and time across their range. Flying foxes exhibit 69 

nomadic behavior to track dynamic flowering of native Eucalyptus and other Myrtaceae species, 70 

which involves frequent switching of roosts hundreds of kilometers apart within a month (Palmer et 71 

al. 2000, Welbergen et al. 2020). HeV shedding is often measured from pooled under-roost urine 72 

samples and is summarized as prevalence (percentage of samples positive). HeV prevalence at a roost 73 

ranges from undetectable levels to over 60% (Edson et al. 2015, Field et al. 2015, Peel et al. 2019). A 74 
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leading hypothesis is that environmental stress increases HeV shedding, driving observed spillovers 75 

(Plowright et al. 2015).  76 

Even though host condition is recognised to impact population-level processes, most studies 77 

use individual-level data, such as fat scores and stress biomarkers, to link host condition to infection 78 

status or severity. Instead, using population-level indicators of resource availability may highlight 79 

environmental conditions that periodically enhance host susceptibility, reactivate latent infections, or 80 

increase pathogen shedding. Directly measuring physiological stress and body condition in wild flying 81 

foxes is extremely difficult. Here, we tested whether models of population-level stress and condition, 82 

based on three distinct proxies for physiological stress, can approximate the spatiotemporal variation 83 

in host condition that influences virus shedding. For example, rehabilitation intake numbers are likely 84 

to reflect changes in energetics and body condition, with the rate of admissions to rehabilitation 85 

facilities across eastern Australia serving as a proxy of population-level stress (Mo et al. 2020). 86 

Previously, nutritional stress caused by acute food shortages in winter and spring has been linked to 87 

preceding El Niño events (Becker et al. 2023, Eby et al. 2023), and unfavorable weather conditions in 88 

the preceding year have been correlated with higher shedding pulses (Paez et al. 2017). Additionally, 89 

in response to acute food shortages, flying foxes form new fissioned roosts outside their historical 90 

range (Eby et al. 2023).  91 

Using HeV as a case study, we developed a multiscale modeling approach that incorporated 92 

factors hypothesized to influence both the dynamic distribution and body condition of reservoir hosts 93 

in space and time. These models took a statistical mining approach to combine empirical relationships 94 

from separate data sources that did not contain information about HeV infection but could act as 95 

proxy indicators of biological processes such as food availability, roost selection, and physical 96 

condition. The model was designed to estimate spatiotemporally dynamic risk of virus prevalence 97 

based on distinct statistical signals that may describe variation in virus shedding. In contrast to 98 

approaches that combine all environmental predictors into a single model (implicitly spanning all 99 

scales simultaneously), our approach enhanced interpretability by linking specific proxies to a priori 100 
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hypotheses about the mechanisms driving virus shedding. This process could be described as 101 

hypothesis-driven feature construction. We validated model predictions using historical virus 102 

prevalence data from black flying fox roosts. The modular nature of our new multiscale modeling 103 

approach supports the integration of new data and new models as system knowledge expands.  104 

METHODS 105 

General approach. 106 

We developed four component models using independent data sets of observed locations and 107 

potential indicators of physiological stress among reservoir hosts (full details in Supporting 108 

Information). These components occurred at different spatial scales and were combined and scaled to 109 

provide a spatially and temporally explicit prediction of virus shedding (summarised as prevalence) 110 

that could be compared to field data. 111 

 112 

Case Study: Hendra virus component models. We predicted the risk of HeV shedding in subtropical 113 

eastern Australia by linking component models split across two scales to 1) identify where flying fox 114 

reservoir species are likely to occur and 2) predict stress proxies for flying fox condition at those 115 

locations (Fig. 1). Importantly, we tested whether host condition measured by proxies affected the 116 

likelihood of HeV shedding (Fig. 1). We limited our analysis to a region of eastern Australia 117 

encompassing all confirmed HeV spillover events and all roost locations used to train the model on 118 

black flying fox presence. This area included the distribution of Pteropus alecto in coastal subtropical 119 

and tropical regions (Hall and Richards 2000, Churchill 2009).  120 

For each component model, we applied generalized boosted regressions to spatiotemporally-121 

explicit environmental covariates reflecting contemporaneous and historical conditions by 122 

incorporating 2 to 24-month lags. We selected these lags as many native black flying fox food 123 

resources (Palmer et al. 2000, Markus and Hall 2004) do not flower annually and instead produce 124 

nectar and pollen in episodic events that reflect lagged environmental conditions (Eby and Law 2008, 125 
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Hawkins et al. 2018). Flowering can be highly dynamic in certain native species and is thought to be 126 

driven in part by cumulative climatic conditions (Law et al. 2000, Birtchnell and Gibson 2006, Hudson 127 

et al. 2010). We included the Oceanic Niño Index (ONI), Southern Oscillation Index (SOI), and Southern 128 

Annular Mode (SAM) as reliable climatic indicators. Local environmental conditions included summary 129 

metrics of temperature, precipitation, and primary productivity on a ≈ 5 km grid. For lagged conditions 130 

we used cumulative values or standard deviations to account for variability in conditions. We also 131 

incorporated land cover data into models and summarized it as the proportion of land cover within a 132 

20 km radius. In other settings, flying foxes can forage within smaller or larger radii, dependent on 133 

available resources (Palmer 1997, Palmer et al. 2000), but 20 km encapsulates a reasonable foraging 134 

distance from a roost by individual P. alecto (Palmer 1997).  135 

 136 

Reservoir host locations. Pteropus alecto is highly social and roosts in colonies. Colony sizes vary 137 

significantly throughout the year and among specific roosts (Lunn et al. 2021). We therefore focused 138 

on modeling roost occupancy of black flying foxes across the study region using survey data collected 139 

in Queensland (2003-2021) and New South Wales (2012-2019) through the National Flying Fox 140 

Monitoring Program (NFFMP) (National Flying Fox Monitoring Program, 2020) and grey-headed flying 141 

fox population monitoring (Eby et al. 2022a). The NNFMP data provided the most comprehensive 142 

dataset (n = 14,952 unique roost observations over 15 years) of flying fox locations in Australia, 143 

despite not covering the entire species range and having variation in frequency of counting. We 144 

supplemented this data withoverwintering roost locations and observations from 2002-2019 (Eby et 145 

al. 2022a), creating a total of 18,861 records. We disaggregated locations to the monthly time scale 146 

such that a roost presence was marked for each grid cell when it was known to be occupied by at least 147 

one black flying fox (n = 10,622). We used roost observations without black flying foxes (n= 8,239) as 148 

absence points. We then fit a boosted regression tree model using the gbm package in R (Greenwell 149 

et al. 2022). 150 

 151 
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Host condition. We identified environmental predictors of three separate proxies for host condition 152 

that we hypothesized to reflect stress in this system: rehabilitation admissions, fissioning of roosts, 153 

and acute food shortages. We considered that rehabilitation and new roosts are dependent on spatial 154 

(x) and temporal (t) variation, whereas food shortage is only temporal (t) within our study area 155 

because it usually occurs at geographic scales greater than bat movements. These metrics do not 156 

directly measure virus shedding, but based on previous studies we expected increased stress to 157 

correlate with higher virus shedding in this system (Becker et al. 2023, Eby et al. 2023). Additional 158 

information on each model and the calculation of corrected AUC is available in the Supporting 159 

information. 160 

Rehabilitation admissions. We modeled the probability of flying fox rehabilitation, P(Axt), using 161 

monthly intake records from WIRES Mid North Coast (n = 695) and Northern Rivers (n = 1027) 162 

in New South Wales (https://figshare.com/s/ddb5a1584609b20f6596). The rehabilitation 163 

centers recorded the species, originating postcode, and intake date. We fit a boosted 164 

regression tree model to presence and background points to predict the probability of any 165 

flying fox being brought to rehabilitation centers. We defined presence data based on flying 166 

fox admissions between 2005 to 2020 (n = 5,075) and extracted environmental characteristics 167 

from each postcode polygon for the month and year of intake. We chose background data 168 

within the same postcodes and weighted random sampling of dates.  169 

 170 
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New Roost Formation. We constructed a boosted regression tree model to predict the 171 

probability of a location supporting a new, fissioned overwintering roost: P(Rxt). Newly 172 

established roosts have higher rates of virus shedding (Becker et al. 2023); therefore, 173 

identifying environmental features associated with the formation of these new overwintering 174 

roosts may provide a valuable indicator of stress. We used the aforementioned dataset on 175 

overwintering roosts to identify new black flying fox roosts (n= 195) formed between 2000 176 

and 2019 (Eby et al. 2022a). We used conditions from August (the last month of winter) in the 177 

year a new roost was formed, or the last month of acute food shortage if the roost was 178 

formed in a year with food shortage, as presence data. We selected background data 179 

weighted by predictions from the roost SDM . 180 

 181 

Food Shortage. To model the probability of acute food shortages, P(Ft), we used records of 182 

nectar shortage (Eby et al. 2022b). Acute food shortage (hereafter referred to as “food 183 

shortage”) is a binary response defined every month based on surveys from apiarists over an 184 

approximate area of 4000 km2 in New South Wales from January 1998 to March 2020. We 185 

assumed food shortages were equivalent across the entire study region and developed a 186 

model based on only global climatic features (ONI, SOI, SAM). We applied a gradient boosted 187 

model (Chen et al. 2023) to predict the probability of an food shortage using a binary response 188 

of months with (n = 22) and without (n=245) food shortages.  189 

 190 

Multiscale model of Hendra shedding. We first used the roost occupancy model to locate a 191 

temporally dependent number of roosts across the study area. We determined the number of roosts 192 

each month based on predictions of a generalized additive model of occupied roosts based on the 193 

NFFMP dataset. We randomly distributed the number of roosts for a given month and weighted the 194 

probability of choosing a given grid cell using the roost occupancy model output. We did not allow 195 

multiple roosts to occupy the same grid cell, resulting in roost spacing of at least 5 km. We did this to 196 
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ensure roosts are approximately as distant as the minimum observed distance (2 km). We then 197 

assigned each roost a unique foraging area encompassing the space closest to that roost with 198 

tessellation followed by truncation of any part of a polygon extending more than 50 km from each 199 

location. This divided areas between roosts when they were nearby while preventing unrealistically 200 

distant areas from being incorporated into roost condition predictions. 201 

We predicted virus shedding as prevalence at a roost location to compare with observed data 202 

from pooled under roost sampling. Host condition (Cxt) predictions were determined by all 203 

combinations of three host condition models: P(A) was the probability of bats needing rehabilitation, 204 

P(R) was the probability of the site being a new overwintering roost, and P(F) was the probability of an 205 

acute food shortage. To quantify the spatial component of stress, we calculated the geometric mean 206 

of rehabilitation and new roost formation. We then multiplied the complement of spatial stress by the 207 

complement of food shortage, which was expected to affect the entire area and hypothesized to 208 

compound spatial stress. Multiplying ensured a cumulative prediction of stress, i.e., low values of one 209 

stress type did not offset high values of the others. We combined the results from the three models as 210 

follows: 211 

 C!" = 1 − (1 − &P(A!")P(R!")	)(1 − P(F")) 212 

 213 

C varies between 1 (when bats are certain to be stressed) and 0 (when bats are unlikely to be 214 

stressed). Although this is a naive estimator, we propose it as a reasonable starting point that will be 215 

proportional to stress if the component hypotheses are supported. This value was assumed for the 216 

entire area within each roost tessellation and represented a naive model for how host condition 217 

proxies may interact. For each combination of component models, we considered the maximum 218 

possible prevalence to match the highest observed prevalence at a roost in a large-scale Hendra virus 219 

survey (MaxP=66.6%; Field et al. 2015). We then calculated the predicted prevalence for each space-220 

time point: 221 

P!" = C!"MaxP 222 
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We predicted prevalence across the landscape for a given month by generating 1,000 roost location 223 

maps, obtaining the host condition for each distribution, predicting the prevalence within each 224 

tessellation, and then averaging those 1,000 random realizations from January 2008 to December 225 

2019. We maximized information gained about how stress proxies vary in space and time by excluding 226 

zero prevalences resulting from roost absence from the averages. We incorporated uncertainty in the 227 

host condition models by bootstrapping the input data for each model 1,000 times and refitting to the 228 

bootstrapped data. Therefore, each roost location map for a month was associated with one of the 229 

bootstrapped host condition models. 230 

 231 

Model validation and comparison. We compared prevalence predictions from each multi-scale 232 

model to observed HeV prevalence estimates from under-roost sampling of 26 roosts across eastern 233 

Australia (Field et al. 2015). We only used roosts sampled at least five times within the study and 234 

observed to have P. alecto within the study period, resulting in 352 observations of 23 roosts from 235 

July 2011 to November 2014. Predicted prevalence values for each observed roost were calculated 236 

from model predictions for a 20 km buffer around the site coordinates.  237 

Host condition can be affected by both acute and chronic effects. To determine the 238 

appropriate temporal scale for linking host condition to virus shedding, we first considered cumulative 239 

lagged conditions by comparing the 3 to 12-month averages of each condition to contemporaneous 240 

condition prevalence predictions. For each component model, we selected the most informative lag 241 

based on Spearman correlation coefficients of predictions against observations. Using the cumulative 242 

condition lags that maximized this correlation coefficient, we investigated the influence of each 243 

component model and all possible combinations on prevalence predictions.  244 
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We also considered a null model that used only the roost suitability predictions (no condition); 245 

the null model tested whether the likelihood of host presence was sufficient to explain variation in 246 

prevalence. This resulted in eight sets of predictions, and we compared the relative performance of 247 

each of these predictions using root mean squared error (RMSE) and took the mean of this metric for 248 

each sampled roost. The lowest values of RMSE corresponded to the best-fitting models. Spearman 249 

rank correlations for the same set of models provided a complementary measure of relative 250 

agreement between predictions and observations. 251 

RESULTS 252 

Black flying fox roost occupancy and indicators of flying fox condition - measured as rehabilitation 253 

admission, new roost formation, and food shortage - exhibited predictable spatiotemporal variation 254 

across eastern Australia. We linked these component models to predict virus shedding and 255 

demonstrate empirical relationships between host locations and conditions with implications for HeV 256 

shedding.  257 

 258 

Component model performance 259 

Reservoir host locations. Environmental features predicted black flying fox roost occupancy (Fig. 2). 260 

Our best model of roost locations had a mean corrected AUC of 0.867. Full details of all model 261 

evaluation and formulation are in the Supporting information. The most important variables 262 

predicting roost occupation included percentage of land cover (including urban, pasture, cropland, 263 

and forest), standard deviations of temperature (maximum, minimum, and range), and cumulative 264 

solar exposure. Black flying foxes were more likely to occupy roosts in areas with high percentages of 265 

urban land cover, intermediate pasture, low crop cover, both low or high percentage forest cover within 266 

foraging radii (20 km), low temperature variability within the last nine months, and higher soil moisture.  267 

Host condition. Full model results for the three proxies of host condition, including partial dependence 268 

plots and relative importance scores of the top variables, are reported in the Supporting Information. 269 
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Our best model of rehabilitation admissions had a mean corrected AUC of 0.876. Land cover classes 270 

were most important in these models followed by various weather and climatic variables. Our best 271 

model of new roost formation had a mean corrected AUC of 0.9. The probability of a new roost 272 

formation was highly spatially dynamic and depended on land cover features, soil moisture, and 273 

various lagged temperature and precipitation variables. Our best model of food shortage had a mean 274 

corrected AUC of 0.811 (Fig. 3). The most important predictors were higher ONI 9 months prior, lower 275 

ONI 21 months prior, and higher SAM 9 months prior. In contrast to the new roost model, the 276 

probability of rehabilitation and food shortage were most dependent on temporally varying features, 277 

resulting in large variation in predicted host conditions between months and years.  278 

 279 

Multi-scale model performance in predicting HeV shedding 280 

To assess multi-scale model performance we initially compared different lags of host condition 281 

indicators with the empirical estimates of virus shedding. We found that a cumulative 12-month lag in 282 

predicted probability of a food shortage (i.e. the average predicted food shortage over the last 12 283 

months) most closely matched the timing and amplitude of HeV shedding observations from 2011-284 

2014. After comparison with other lengths, this cumulative 12-month lag performed the best for our 285 

other proxies of stress and was used for all multi-scale model comparisons. 286 

The most accurate multi-scale model included the cumulative 12-month food shortage and 287 

roost location models (Fig. 4, Table 1). The null model performed better than models that included the 288 

rehabilitation and new roost models without food shortage and the version with all three stress 289 

models. Predictions of virus prevalence that included the new roost component model were poor, 290 

resulting in negative correlations with observed prevalences (Table 1).  291 

When we compared predictions of HeV shedding from 2011-2014, we found the best model 292 

predictions differentiated low and high observed prevalence while failing to precisely track the magnitude 293 

of observed prevalence (Fig. 5, Supporting information). The best multi-scale model had spatial 294 

variation in predictions, but this did not arise from the food shortage component. Instead, spatial 295 
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variation arose from variation in roost occupancy and tessellations around these roosts in each 296 

month. Inclusion of the spatially varying proxies for host condition (rehabilitation intakes and new 297 

roost formation) degraded predictions (Table 1). Although the null model (roost occupations only) 298 

outperformed some multi-scale models in certain roosts, it was never the best performing (Supporting 299 

information).  300 

DISCUSSION 301 

Our goal was to construct a model that could predict virus shedding by integrating several 302 

hypothesized drivers, rather than relying solely on a model closely parameterized to a single dataset. 303 

A multi-scale model potentially provides virus shedding predictions based on host location and 304 

condition with greater transferability than a universal model directly predicting virus shedding. Even 305 

though bats are able to track dynamic resources over long distances, we were able to accurately 306 

predict roost suitability across space and time. However, we found that environmental variables 307 

explaining location were insufficient to predict virus shedding. Combining the scales encompassing 308 

host location and host condition improved spatially and temporally explicit predictions of HeV 309 

prevalence and provided support for the hypothesis that stress is linked to virus shedding. Specifically, 310 

the superior performance of a model including food shortage provides additional evidence that host 311 

condition driven by food shortage is an important driver of virus shedding in this system (Eby et al. 312 

2023).  313 

Although host condition has been proposed as an essential component of transmission, no 314 

standard host condition metric exists for inferring impacts on infection outcomes (Sanchez et al. 2018, 315 

Vicente-Santos et al. 2023). In this study, we used three proxies for host condition that were agnostic 316 

to epidemiological outcomes, available for sufficiently long periods (14-22 years), and from a large 317 

spatial area. These types of ecological data - including species occurrences, wildlife rehabilitation 318 

admissions, and food availability - could be obtained for other host species and utilized similarly. 319 

However, not all three host condition models effectively predict underroost virus prevalence. We 320 
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found that the host condition model based on the probability of a roost being newly established led to 321 

a negative correlation between model predictions and observed data on virus shedding, worse than 322 

null model predictions. The poor predictive capability of new roost formation may result from 323 

mismatches in time scales from when a new roost forms and when virus shedding increases. Previous 324 

studies showed that new overwintering roosts have higher shedding pulses, particularly following an 325 

acute food shortage (Becker et al. 2023). The component model we developed only identifies 326 

probabilities that a new roost formed, and does not identify ‘new’ overwintering roosts over a longer 327 

time period. These new roosts are expected to affect shedding long after they are formed because 328 

they are likely in poor foraging locations. The poor fit of this model to observed prevalence data 329 

suggests that there is a mismatch in scales of when/where new roosts form and when this is 330 

informative for temporal variation of HeV shedding. The new roost host condition model varied with 331 

highly spatially variable environmental features (soil moisture, lagged precipitation, lagged 332 

temperature), whereas food shortage and rehabilitation models predicted higher temporal variation, 333 

and both provided closer predictions to observed data. Nevertheless, the predicted prevalences from 334 

the rehabilitation model also exhibited lower correlations with observations than the null model, 335 

possibly due to the variety of possible causes for a rehabilitation admission or the limited spatial 336 

extent of these data. 337 

Multiscale models including host condition - via food shortages - had superior predictive 338 

power, though their predictive performance was modest as measured with correlation (Spearman’s r 339 

≈10%). The better performing models of host condition were not seasonal - this is in contrast to 340 

observations of underroost virus shedding, which report seasonal pulses (Paez et al. 2017). Pulses of 341 

virus shedding have been linked to seasonal demographic and ecological changes (Wacharapluesadee 342 

et al. 2010) - such as birth (Joffrin et al. 2022) and winter food shortages (Becker et al. 2023). We did 343 

not observe any seasonality in any of the host condition models, and thus these did not predict 344 

seasonal patterns of virus shedding. Furthermore, the lack of seasonality in virus shedding in the 345 

multiscale model is also partially driven by the impacts of host condition accumulating over the prior 346 
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12 months - which led to predictions of gradual changes in virus shedding. The 12-month time period 347 

used was selected based on RMSE in 2011-2014 and, importantly, the fit to observed data was not 348 

predicated on any explicit considerations about seasonally dynamic host demography, any data on 349 

virus positivity across roosts, or data describing individual-level variation, all of which are known to be 350 

influential factors in bat virus shedding (Amman et al. 2012, Dietrich et al. 2018, Peel et al. 2019, 351 

Mortlock et al. 2021, Joffrin et al. 2022). Because these processes are not accounted for here, this 352 

model can be thought of as improving knowledge of periods of time a pulse is more likely to occur in a 353 

location but not the duration of shedding pulses. Future iterations incorporating data on these 354 

components and scales may improve predictions and underscore the relative importance of 355 

underlying processes contributing to virus shedding.  356 

Model uncertainty may account for limited or absent predictive power for submodels and 357 

their combinations. The spatial and temporal span of each dataset differed. There was much more 358 

data available for roost locations compared to the limited data available for assessing the signal of bat 359 

rehabilitation. These differences are clear in the submodel performances as measured via AUC, and 360 

higher uncertainty will necessarily reduce the strength of the correlation between model predictions 361 

and prevalence. Future work could incorporate different model structures - e.g., estimating a 362 

posterior distribution of condition that can be sampled from to incorporate errors in the multiscale 363 

model in a more interpretable manner. Other machine learning tools applied to multiscale biomedical 364 

models offer new methods that may be adapted to epidemiological problems (Alber et al. 2019, Peng 365 

et al. 2021). Our work and previous studies (i.e. Guo et al. 2015, Kramer et al. 2019, Orton et al. 2020) 366 

have highlighted that multiscale models improve predictions of epidemiological outcomes and 367 

improve our ability to design more targeted, effective interventions. As new methods and tools are 368 

developed for big data, there is an exciting opportunity to apply these to complex systems that 369 

operate across multiple ecological scales. 370 

Although HeV presents a uniquely well-studied system for understanding multiscale processes 371 

impacting prevalence in a highly mobile host population, there remain limitations to the available 372 
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datasets. Validation of multiscale models was carried out using a dataset of 23 roosts that had 373 

sufficient spatial coverage of the study region but was limited to samples taken over a 41-month 374 

period. It is likely that the choice of lags and informative submodels are overfit to this time period and 375 

epidemiological patterns. To confirm the multiscale model performs well beyond this period, 376 

additional underroost sampling across a large area would be required. Furthermore, the host 377 

condition models are based on data that represent a subset of the full geographic range of black flying 378 

foxes. Additional data from regions further north in the subtropics and tropics and further south in 379 

temperate regions would likely improve predictions of host condition. Finally, if spatial aspects of host 380 

condition are more influential than shown here, these could improve prevalence predictions in these 381 

regions. This may also allow consideration of whether there is a relevant scale of spatial variation 382 

apart from the new roost proxy that performed poorly here. 383 

The modular design of this multiscale approach allows for flexible data integration and 384 

consideration of hypothesized drivers of virus shedding acting on different temporal and spatial 385 

scales. This contrasts with directly fitting a statistical prevalence model to the many predictors 386 

considered across the component models. While a single statistical model might achieve equivalent or 387 

superior performance on the validation data, it reduces interpretability, impedes hypothesis 388 

generation, and potentially reduces transferability across space and time; aspects for which this 389 

approach offers advantages. The statistical integration of multiple models capturing multiple scales 390 

can be applied to other systems, as proxies are easily replaced to represent system-specific 391 

mechanisms hypothesized to influence pathogen shedding. In this study we present one way for 392 

processing, analyzing, and evaluating multi-scale models; this approach may serve as a valuable tool 393 

for modeling diseases within their ecological context. 394 

 395 
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Figure 1. Conceptual multiscale model of Hendra virus shedding. Detecting virus shedding in 559 

individual bats is challenging due to high costs and logistical difficulties of field studies. However, 560 

shedding can be partially estimated by calculating virus prevalence from pooled under-roost urine 561 

samples. Virus shedding is hypothesized to increase during, or following, periods when reservoir hosts 562 

(black flying foxes) are in poor condition. Host condition is also difficult to measure directly but can be 563 

approximated in multiple ways: through the rate of black flying fox admissions to rehabilitation 564 

facilities, by the formation and persistence of new roosts on the landscape (this is thought to be 565 

initially an acute response to lack of food), and the occurrence of occasional regional food shortages. 566 

These three proxies for host condition are influenced by environmental conditions, which also play a 567 

role in where bat roosts are located on the landscape. Our multiscale model links statistical 568 

predictions of key components (roost locations and flying fox condition) to estimate virus prevalence 569 

across space and time, enhancing our understanding of where and when bats are most likely to 570 

actively shed virus. 571 
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Figure 2. Mean environmental suitability for black flying fox roosts from 1996-2021. Warmer 572 

colors show higher predicted suitability to environmental conditions, while cooler colors show lower 573 

predicted suitability. Overall, we see consistency in suitable regions for black flying foxes, with the 574 

edges of these regions expanding or retracting slightly according to seasonal shifts.  575 
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Figure 3. Monthly predicted probabilities of regional food shortage. Months with the highest 576 

predicted probabilities of an acute food shortage corresponded to months with observed acute food 577 

shortages (yellow). 578 

579 
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Table 1. Performance of single and multi-scale model combinations. In the Model column, 580 

‘All condition models’ refers to the multi-scale model with rehabilitation, new roosts, and food 581 

shortage models. The null model only includes roost suitability without any condition 582 

modifiers. Correlation (to observed shedding prevalence) refers to mean Spearman rank 583 

correlation coefficients with the 95% confidence bounds given in parentheses. The values in 584 

bold indicate the highest performance. 585 

Model RMSE Correlation  

Food shortage 0.071 0.102  
(0.097, 0.108) 

Rehab 0.255 0.002  
(0.000, 0.010) 

New Roost 0.220 
-0.057  

(-0.059, -0.048) 

Food shortage + Rehab  0.269 0.042  
(0.038, 0.048) 

Food Shortage + New Roost  0.236  -0.011  
(-0.014, -0.003) 

New Roost + Rehab 0.375 -0.042 
(-0.047, -0.036) 

All condition models 0.386 -0.015  
(-0.019, -0.009) 

Null 0.297 
0.079 

(0.072, 0.081) 
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Figure 4. Comparison of predicted to observed prevalence across model structures. Root mean-586 

squared error indicated deviation of predicted values from observations. Lower values of RMSE 587 

indicated closer model fits to data. Each point represents the mean RMSE value of a particular roost 588 

(N=23 unique roosts). Lines are weighted averages across all roosts accounting for the number of time 589 

points observed per roost (ranging from 5 to 45; median 12.5). 590 
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Figure 5. Monthly HeV prevalence for observations compared to null and best-fit model 591 

predictions. For a selection of roosts within the study area (beige region of the map), we show the 592 

predicted prevalence values for the food shortage model (dark gray points) and the null model based 593 

on roost suitability (light gray points). Larger magenta points are observed prevalence values from 594 

Field et al. 2015. The panels depict columns as years with observed prevalence values (2011-2014) for 595 

sites organized by latitude (rows).  Predictions for all sites are in Supporting information. 596 
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