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Abstract

Over the past decades, the number of arthropod-borne virus (arbovirus) outbreaks has

increased worldwide. Knowledge regarding the sylvatic cycle (i.e., non-human hosts/envi-

ronment) of arboviruses is limited, particularly in Africa, and the main hosts for virus mainte-

nance are unknown. Previous studies have shown the presence of antibodies against

certain arboviruses (i.e., chikungunya-, dengue-, and Zika virus) in African non-human pri-

mates and bats. We hypothesize that small mammals, specifically rodents, may function as

amplifying hosts in anthropogenic environments. The detection of RNA of most arboviruses

is complicated by the viruses’ short viremic period within their hosts. An alternative to deter-

mine arbovirus hosts is by detecting antibodies, which can persist several months. There-

fore, we developed a high-throughput multiplex immunoassay to detect antibodies against

15 medically relevant arboviruses. We used this assay to assess approximately 1,300 blood

samples of the multimammate mouse, Mastomys natalensis from Tanzania. In 24% of the

samples, we detected antibodies against at least one of the tested arboviruses, with high

seroprevalences of antibodies reacting against dengue virus serotype one (7.6%) and two

(8.4%), and chikungunya virus (6%). Seroprevalence was higher in females and increased

with age, which could be explained by inherent immunity and behavioral differences

between sexes, and the increased chance of exposure to an arbovirus with age. We evalu-

ated whether antibodies against multiple arboviruses co-occur more often than randomly

and found that this may be true for some members of the Flaviviridae and Togaviridae. In

conclusion, the development of an assay against a wide diversity of medically relevant arbo-

viruses enabled the analysis of a large sample collection of one of the most abundant
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African small mammals. Our findings highlight that Mastomys natalensis is involved in the

transmission cycle of multiple arboviruses and provide a solid foundation to better under-

stand the role of this ubiquitous rodent in arbovirus outbreaks.

Author summary

One of the main causes of zoonotic related human morbidity and mortality is the trans-

mission of arthropod-borne viruses such as dengue virus, Yellow Fever virus, and chikun-

gunya virus. These viruses cannot only infect humans but also livestock, pets, and wildlife,

though our understanding of their non-human hosts remains limited. Rodents are

thought to be an important host for these viruses because they can be abundant, often live

near humans, and some are already known to be viral hosts. However, research has

focused mostly on non-human primates, neglecting other potential wild hosts. To address

this gap, we have developed a high-throughput antibody test to screen rodent blood

against 15 different arboviruses. Our findings reveal thatMastomys natalensis, a common

African rodent species, carries antibodies that (cross-)react against these viruses. We

hypothesize that immunologically naïve juveniles may drive transmission, particularly

during population outbreaks. These outbreaks coincide with environmental conditions

that are favorable for mosquitoes, thus increasing the risk of spillover to humans, live-

stock, and wildlife. Understanding the role of rodents in arbovirus transmission dynamics

is crucial for mitigating zoonotic disease risks.

Introduction

The African continent harbors a diverse array of infectious diseases with profound impacts on

public health, economic development, and general well-being [1,2]. Diseases caused by arthro-

pod-borne viruses, collectively known as arboviruses, are a growing threat for Africa and the

rest of the world especially in relation to climate and environmental changes [3,4]. Arboviruses

are a polyphyletic clade that includes several viral families, of which the most important are

Flaviviridae, Togaviridae, Bunyaviridae, and Reoviridae [5]. Some well-known arboviruses,

notorious for their negative effects on human health, are dengue virus, Yellow Fever virus,

Zika virus, and chikungunya virus. Mosquitoes, ticks, sandflies, and midges are the primary

vectors responsible for arbovirus transmission as they engage in hematophagy. These vectors

do not only affect humans and livestock, but also a wide range of wildlife hosts [6–8]. Indeed,

while for some arboviruses morbidity and mortality can be high in humans, similar impacts

have been detected in other animals by arboviruses such as Rift Valley Fever virus in goats and

sheep, West Nile virus in birds and horses, and Japanese Encephalitis virus in birds and pigs

[4,5,9–11]. The (re-)emergence of arboviruses is linked to increased urbanization and global

connectivity, natural genetic evolution of viruses, and adaptations of the vectors to changing

climate and environments [11,12]. Emerging arboviruses pose a threat for humans, livestock,

as well as wildlife, therefore it needs to be approached from a One health perspective (i.e.,

including human, animal, and environmental health) [13,14]. Nevertheless, our knowledge

about the extent to which wild animals can serve as sylvatic hosts for human-infecting arbovi-

ruses and the natural diversity of arboviruses remains insufficient. This significantly limits our

understanding of arbovirus transmission dynamics, which is required to develop more effec-

tive control measurements.
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For decades, efforts have been made to identify natural reservoirs of arboviruses to monitor,

prevent, and control sources of infection that pose a threat to human health [15–17]. Several

studies have proposed non-human primates as significant potential reservoirs for arboviruses,

as they have found arbovirus antibodies and viral RNA in this animal group [18–20]. However,

other animal groups such as small mammals have often been neglected as potential arbovirus

hosts [21]. Sporadic reports of arboviruses in small mammal species suggest that a more com-

prehensive investigation of their potential role as a host is needed [22–24].

Rodents have a number of characteristics that could make them an important hosts for sev-

eral pathogens, including arboviruses [23]. Particularly the high species diversity, the fact that

many species can reach high population abundances, and turnover rates. The risk of pathogen

spillover to humans increases with the role of some rodents as a pest species, due to their prox-

imity to humans [25,26]. A notable example of such a pest species is the ubiquitous rodent

Mastomys natalensis, commonly known as the multimammate mouse. This species inhabits

many regions of sub-Saharan Africa, with a preference for crop fields, fallow land, and typically

occurring within or at the fringes of urban settlements [27,28]. In east Africa, especially in

Tanzania, the reproductive cycle ofM. natalensis is strongly correlated with seasonal rainfall

which leads to strong seasonal fluctuations in density (20–500 individuals/hectare) and occa-

sionally even severe population outbreaks (>1000 individuals/hectare) [29–32]. This has large

ecological and societal impacts due to crop damage and influences seasonal transmission

dynamics of different pathogens [33–35]. The multimammate mouse is a known host for sev-

eral zoonotic pathogens such as Lassa mammarenavirus, Yersinia pestis, Leptospira interrogans,
Leishmania major as well as different ecto- and endoparasites [31,36–52]. No studies have

investigated or reported on arboviruses inM. natalensis, except Diagne et al. (2019) who have

detected Usutu virus RNA inM. natalensis. However, other studies have reported on sporadic

arbovirus detections in other rodent species in sub-Saharan Africa [22,24,53,54]. These find-

ings, along with the ecology ofM. natalensis (i.e., high abundance during population out-

breaks, proximity to humans, and its status as a proven pathogen host) may suggest that this

species plays a role in the natural transmission cycle of arboviruses. Consequently,M. natalen-
sis could thus pose a risk to humans in east Africa, particularly in Tanzania as an amplifying

host.

The human population in Tanzania has experienced several outbreaks of chikungunya

virus, Rift Valley fever virus, West Nile virus, and dengue virus in the past decades [55–59].

Due to the symptomatic similarities between arbovirus and malaria infections, which has a

prevalence of around 20% in Tanzania, it is probable that arbovirus cases are underreported

[60,61]. While these studies confirm that the local human population is indeed exposed to

arboviruses, the specific dynamics of arbovirus transmission in this region remains unclear.

The goal of this study was to investigate the potential of wildM. natalensis to serve as a host

for arboviruses in their natural environment. To achieve this, we first developed a multiplex

immune assay to detect immunoglobulin G (IgG) antibodies against 15 different arboviruses

and subsequently conducted a comprehensive screening of almost 1,300 blood samples

obtained fromM. natalensis from Morogoro, Tanzania.

Materials and methods

Ethics statement

The Ethical Committee for Animal Testing at the University of Antwerp approved the animal

experiments performed in this study (ECD2021-79 and ECD2023-08).
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Sample origin

The samples used in this study were collected during previous published and unpublished studies

conducted by the University of Antwerp and Pest Management Center of the Sokoine University

of Agriculture onM. natalensis in Morogoro, Tanzania, between 2010 and 2019 [31,62,63] (Fig 1).

The samples were divided in two screening sessions. The first session consisted of approximately

500 dried blood spot (DBS) samples, from wild captured mice that were used in infection and

behavioral experiments in six different years (i.e., 2010, 2011, 2015, 2017, 2018, and 2019) with an

average of 80 samples per year. The second session consisted of 800 DBS samples from mice

involved in capture-mark-recapture experiments in 2017 and 2019. All samples were randomly

selected from the studies regardless of individual characteristics or trapping period.

During these studies,M. natalensis were live caught using Sherman traps (H.B. Sherman

Traps, Tallahassee, USA) in a heterogeneous landscape (e.g., woodlands, maize fields, and fal-

low land) on the premises of the Sokoine University of Agriculture in Morogoro, Tanzania.

Blood was collected from the retro-orbital plexus using a 50μL hematocrit capillary tube and

preserved on filter paper (Serobuvard; LDA 22; Zoopole, France). The filter paper was dried

for 12 hours at room temperature and archived at -20˚C in envelopes with desiccant. Addi-

tional data related to characteristics such as sex, reproductive status, weight, and body mea-

surements were recorded. More detailed Information pertaining to the trapping procedures

and sampling methodology can be found in the primary research documents associated with

these studies [31,62–64].

Analysis and protocol

Assay set up. To assess the presence of arbovirus antibodies in DBS against a panel of

arboviruses, we first developed a multiplex immune assay using Luminex technology [18,65]

Fig 1. African continent with a focus on Tanzania. Samples were collected in the city of Morogoro (red triangle)

which is located in the Morogoro region. Basemap origins: https://d-maps.com/carte.php?num_car=736&lang=en and

https://d-maps.com/carte.php?num_car=4976&lang=en.

https://doi.org/10.1371/journal.pntd.0012233.g001

PLOS NEGLECTED TROPICAL DISEASES Antibodies against arboviruses in Mastomys natalensis from Tanzania

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012233 September 4, 2024 4 / 21

https://d-maps.com/carte.php?num_car=736&lang=en
https://d-maps.com/carte.php?num_car=4976&lang=en
https://doi.org/10.1371/journal.pntd.0012233.g001
https://doi.org/10.1371/journal.pntd.0012233


(S1 File). Recombinant virus-derived proteins (Table 1) were covalently coupled to carboxyl-

functionalized fluorescent magnetic beads (1–3μg/1.25*10^6 beads) (Luminex Corp. MagPlex-

Microspheres; Bio-Rad; Temse, Belgium) employing the BioPlex amine coupling kit (Ref.:

171406001; Bio-Rad; Temse, Belgium) following the manufacturer’s instructions.

Arbovirus protein inoculation. To obtain positive control samples we inoculated captive

M. natalensis individuals (age: 5–12 months) from our breeding colony at the University of

Antwerp with recombinant virus-derived proteins (Table 1) [66–68]. We subcutaneously

injected 4μg of the respective virus protein and 1μL of vaccine adjuvant (Quil-A adjuvant; Invi-

voGen; Toulouse, France), dissolved in autoclaved phosphate buffered saline (PBS) to achieve

a final volume of 1mL. This inoculum was evenly divided, with 0.5mL administered into the

scruff and 0.5mL into the hindlimb of the animal, using a 25-gauge, 12.5mm needle and a

0.5mL syringe. This inoculation was duplicated for each viral protein (i.e., performed in two

mice) and repeated twice for each mouse (i.e., inoculation on day 0 and day 20). We collected

blood, according to the same method as in the previously mentioned studies, every 10 days

from day zero until day 30, at day 30 we also collected whole blood from which serum was

extracted. Serum from day 30 from individuals were the antibody response increased over

time were considered as positive samples. Day 30 had the highest antibody titer in our tests

and is also a time point at which IgG antibody development is anticipated to have reached a

peak [69,70].

Table 1. Recombinant arbovirus proteins used for the bead coupling and the inoculation of captive Mastomys natalensis.

Viral family Virus Protein (reference) Supplier

Bunyaviridae Rift Valley Fever virus (RVFV) Nucleoprotein

(REC31640)

The native antigen company

(Kidlington, United Kingdom)

Flaviviridae Yellow Fever virus (YFV) Nonstructural protein 1

(YFV-NS1)

The native antigen company

(Kidlington, United Kingdom)

Flaviviridae Zika virus (ZIKV) Nonstructural protein 1

(40544-V07H)

Interchim

(Montluçon Cedex, France)

Flaviviridae Dengue virus serotype 1 (DENV1) Nonstructural protein 1

(DEN-004)

Prospecbio

(Rehovot, Israel)

Flaviviridae Dengue virus serotype 2 (DENV2) Nonstructural protein 1

(PIP048A)

BioRad

(Temse, Belgium)

Flaviviridae Dengue virus serotype 3 (DENV3) Nonstructural protein 1

(DENV3-NS1)

The native antigen company

(Kidlington, United Kingdom)

Flaviviridae Dengue virus serotype 4 (DENV4) Nonstructural protein 1

(DENV4-NS1)

The native antigen company

(Kidlington, United Kingdom)

Flaviviridae Usutu virus (USUV) Nonstructural protein 1

(Ab218552)

The native antigen company

(Kidlington, United Kingdom)

Flaviviridae West Nile virus (WNV) Nonstructural protein 1

(40346-V07H)

Sinobiological

(Eschborn, Germany)

Flaviviridae Tick-borne Encephalitis virus (TBEV) Nonstructural protein 1

(TBEV-NS1)

The native antigen company

(Kidlington, United Kingdom)

Flaviviridae Wesselsbron virus (WSLV) Nonstructural protein 1

(REC31698)

The native antigen company

(Kidlington, United Kingdom)

Nairoviridae Crimean Congo Hemorrhagic Fever virus (CCHFV) Nucleoprotein

(REC31639)

The native antigen company

(Kidlington, United Kingdom)

Togaviridae Chikungunya virus (CHIKV) Envelope protein 2

(CHI-003)

Prospecbio

(Rehovot, Israel)

Togaviridae Mayaro virus (MAYV) Envelope protein 2

(REC31644)

The native antigen company

(Kidlington, United Kingdom)

Togaviridae O’nyong nyong virus (ONNV) Envelope protein 2

(B4TG40)

Interchim

(Montluçon Cedex, France)

https://doi.org/10.1371/journal.pntd.0012233.t001
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Arbovirus IgG antibody screening. Screening was done in 96 flat-bottom well plates,

each plate contained DBS samples of 80 wildM. natalensis, two background controls, eight

negative controls, and a six step dilution series (1:200–1:625,000) of a positive pool sample.

Each well in the plate contained 50μL of the corresponding sample type. The samples of the

wildM. natalensis were acquired by placing a punched-out DBS (round, 0.5 cm diameter) in

200 μL of dilution buffer (1% bovine serum albumin, 0.2% Tween-20, 5% fetal calf serum, 45%

distilled water, 50% Hypertonic PBS {0.08% NaH2PO4, 0.25% Na2HPO4, 8.8% NaCl}). One

single DBS punch corresponds to approximately 10μL of blood [71]. The punched DBS were

left to elute overnight, in a 1.5mL Eppendorf tube, maintained at a temperature of 4˚C on a

plate shaker. This elution was considered a 1:100 dilution and was diluted, with dilution buffer,

to 1:200 prior to loading in the 96 well plate. This dilution gave the best signal to noise ratio in

our preliminary tests and are in line with previous studies [18,72]. The background control

was reading buffer (1% bovine serum albumin, 0.05% NaN3, 100% phosphate buffered saline).

The eight negative controls were four DBS, treated the same as the wildM. natalensisDBS,

and four serum samples in a 1:200 dilution. All negative controls originated from the breeding

colony at the University of Antwerp. Serum from 15 positive individuals (i.e., one for each

inoculated arbovirus antigen) was pooled to create the positive pool sample, each individual

serum had a final dilution in the pool of 1:200.

In each well of the 96 well plate, 25μL of bead mixture was added. The bead mixture con-

sisted out of ~1000 protein-coated beads per arbovirus antigen suspended in reading buffer.

The bead mixture of the first screening session did not contain ONNV beads.

Plates, containing 50μL of sample and 25μL of bead mixture per well, were incubated for

one hour at room temperature, in the dark and on a plate shaker (Heidolph Titrimax 100;

VWR; Leuven, Belgium) at 400rpm/min. After incubation, plates underwent washing with

dilution buffer using an automated plate washer (Tecan Hydroflex plate washer; Tecan Bene-

lux; Mechelen, Belgium). Subsequently, we added 50μL Biotin anti-mouse IgG (4μg/mL)

(Sigma-Aldrich B7022; Merck Life Science; Hoeilaart, Belgium) to each well and incubated for

40 minutes. After another round of washing, we added 50μL of Streptavidin-R-phycoerythrin

(1μg/mL) (10655783; Fisher Scientific; Brussel, Belgium) to each well, followed by a 10-minute

incubation. The last wash step used reading buffer, and the final bead pellet was resuspended

in 150μL of reading buffer. Beads were read on a Bio-Plex 200 System (Bio-Rad; Temse, Bel-

gium). Results were quantified as the median fluorescent intensity (MFI) based on a minimum

of 100 beads per antigen, MFI data can be found in S1 Table.

Data analysis and statistics

All data preparation, analysis and statistical procedures were conducted using R Statistical

Software (R version 4.3.3) [73] (S2 File).

Weight as age classification. We used the body weight of the wild-caughtM. natalensis
individuals at the time of sample collection as a rough proxy for age, which we subdivided into

three categories based on the 1/3 quantiles of weight; juvenile (5–26.7g), subadult (>26.7–42g)

and adult (>42–91g). These weight classes coincide to the expected sexual maturity, with sex-

ual maturity estimated to occur between 30–40g [29,32].

Inter plate variation. To control for variation between different assay plates and testing

days, the MFI results were transformed to relative antibody units using the positive dilution

series as a standard curve. The MFI result of the positive control starting dilution (i.e., 1:200)

was equalized to 3,125 units and each following dilution step was adjusted proportionally (i.e.,

the final dilution step 1:625,000 corresponded to 1 unit). The results of the two sessions were

combined by linear alignment adjustment. This alignment was based on 86 duplicate samples

PLOS NEGLECTED TROPICAL DISEASES Antibodies against arboviruses in Mastomys natalensis from Tanzania

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012233 September 4, 2024 6 / 21

https://doi.org/10.1371/journal.pntd.0012233


encompassing the measurable range, allowing the adjustment of the results from the first

session.

Serostatus, cutoff and seroprevalence. Finally, each sample was categorized as a

binary value (i.e., 1 = positive, 0 = negative) for each of the tested arboviruses. This was

done based on whether the unit value exceeded the mean cutoff value for that specific arbo-

virus antigen. Five cutoff values were determined for each arbovirus antigen: I) the mean

plus three times the standard deviation of the negative controls (i.e. ‘NegCtrl’) [18,65]; the

change-point analysis, using R package ’changepoint’ (version: 2.2.4), calculated at most one

changepoint based on the II) mean (i.e. ‘CHP.m’), III) variance (i.e. ‘CHP.v’) and IV) a com-

bination of mean and variance (i.e. ‘CHP.mv’) of wild-caught samples [74,75] and V) the

maximum value of an average antibody curve (i.e. ‘Recap’). This curve was based on wild-

caught individuals that were recaptured at least three times and showed seroconversion.

Seroconversion of an individual was considered when the individual’s maximum unit

value was at least four-fold the minimum unit value. This four-fold increase is a standard

seroconversion confirmation measure in human antibody studies [76]. An average antibody

curve, with days as the explanatory variable, was created for each antigen by aligning the

maximum unit value of each recaptured seroconverted individual to the same day. The

binary results were used to calculate the seroprevalence for each arbovirus along with a 95%

confidence interval (CI), using the ‘binom.exact’ from the package ‘binom’ (version: 1.1.1.1)

[77].

Statistical tests. The seroprevalence according to the different cutoff methods was com-

pared to the seroprevalence of the antibody curve cutoff using the ‘chisq.test’ from the package

‘stats’ (version 4.3.3) [73]

As an indication of cross-reactivity in antibody response between the tested arboviruses,

pair-wise Pearson correlations were calculated on the binary results, according to the antibody

curve cutoff, of all samples using the ‘corr.test’ function of R package ‘psych’ (version: 2.4.1)

[78]. The cross-reactivity in antibody response was visualized using the ‘heatmap.2’ function of

the R package ‘gplots’ (version: 3.1.3) [79].

A generalized linear model (logit link function and binomial error distribution) was con-

structed with the package ‘stat’ (version: 4.3.1), with the response variable being the binary ser-

ostatus of each sample [73]. Age (juvenile, subadult and adult), sex and their interaction were

included as explanatory variables. The analysis of variance was performed using a likelihood

ratio test, with p-values calculated assuming a chi-squared distribution. Pairwise comparison

of the seroprevalence was performed between the six combinations of the explanatory vari-

ables (two levels of sex and three levels of age), using the ‘emmeans’ package (version: 1.8.9)

[80]. To prevent reporting statistical findings based on the reliance of an arbitrary p-value of

0.05, we instead present significance in terms of levels of statistical support based on p-values.

P-values exceeding 0.1 are labeled as “no” support and values around 0.05 (range 0.1–� 0.01,

symbol: *) as “weak” support. “Moderate” support was assigned to p-values clearly below 0.05

(range < 0.01–� 0.001, symbol: **), while “strong” support is reserved for p-values lower than

0.05 (< 0.001, symbol: ***). This representation in terms of statistical support is based on cur-

rent statistical reporting practices [81].

Results

In total 1,280 DBS samples were assessed of which 660 were female, consisting of 256 juveniles,

172 subadults and 232 adults, 620 samples were male with 199 juveniles, 313 subadults and 108

adults. Samples of recaptured individuals were considered as individual samples for all

analyses.
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Seroprevalence

The seroprevalences according to the different cutoff methods showed at least a weak statistical

support for a different seroprevalence compared to the antibody curve seroprevalence for

almost all arboviruses. Histograms of the data and seroprevalence for each tested arbovirus

antigen according to the different cutoff methods is shown in S1 and S2 Figs. The cutoff value

according to the antibody curve based on the recaptured seroconverted individuals was used

as the main cutoff value for all further calculations.

The overall arbovirus seroprevalence, defined as at least positive for one of the tested arbo-

viruses, except ONNV, was almost 24% (95% CI: 21.89–26.66%; N = 1280). ONNV was

excluded since the samples of the first session were not screened for antibodies against the

ONNV antigen. The seroprevalence for Flaviviridae was 20% (95% CI: 17.99–22.46%;

N = 1280) and for Togaviridae, excluding ONNV, almost 7% (95% CI: 5.48–8.32%; N = 1280).

Overall, seroprevalences ranged from 0.62% for DENV3 (95% CI: 0.27–1.23%; N = 1280) and

MAYV (95% CI: 0.27–1.23%; N = 1280) to 8.44% for DENV2 (95% CI: 6.97–10.10%;

N = 1280), see Table 2.

Pairwise arbovirus serostatus correlation

The correlations in serostatus of samples between the tested arboviruses are visualized in Fig 2.

Correlation between two arboviruses is depicted in color scale with the statistical symbol,

lower triangle, and the number of positive samples in the upper triangle. The matrix is accom-

panied by a dendrogram based on the hierarchical clustering of the correlation coefficients.

Table 2. Total seroprevalence of each arbovirus and virus family in the wild-caught M. natalensis sample set.

Seroprevalence (%) 95% CI (%) Nr. positive Cutoff

Arbovirusa 24.22 21.89–26.66 310

Bunyaviridae
RVFV 2.58 1.78–3.60 66 37.94

Flaviviridae 20.16 17.99–22.46 258

YFV 2.03 1.33–2.96 26 3.45

ZIKV 3.44 2.51–4.59 44 15.23

DENV1 7.58 6.19–9.17 97 42.11

DENV2 8.44 6.97–10.10 108 101.09

DENV3 0.62 0.27–1.23 8 32.27

DENV4 5.62 4.43–7.03 72 40.66

USUV 4.61 3.53–5.91 59 6.47

WNV 2.42 1.65–3.42 31 25.60

TBEV 1.64 1.02–2.50 21 50.85

WSLV 3.52 2.58–4.68 45 4.16

Nairoviridae
CCHFV 2.81 1.98–3.87 36 5513.61

Togaviridaea 6.80 5.48–8.32 87

CHIKV 6.17 4.92–7.63 79 43.95

MAYV 0.62 0.27–1.23 8 11.91

ONNV 2.18 1.30–3.42 18 77.10

A 95% confidence interval (CI) is provided, and the calculated cutoff value is in units. Sample size was 1280 for each tested arbovirus except for ONNV which had 826

samples
a Indicates that ONNV was not included for that calculation.

https://doi.org/10.1371/journal.pntd.0012233.t002
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The branch lengths are a proxy for relative distance between arboviruses based on the serosta-

tus response of the samples.

The correlation in sample response between the tested arboviruses ranged from -2.44% for

TBEV and ZIKV with no statistical support (p = 0.384) to almost 59% between WSLV and

USUV with a strong statistical support (p< 0.001). The dendrogram based on the hierarchical

clustering of the correlation showed that WSLV–USUV (correlation = 58.52%; p< 0.001),

DENV2 –DENV4 (correlation = 56.03%; p< 0.001) and DENV1 –CHIKV (correla-

tion = 50.31%; p< 0.001) are relatively closer to each other than to other tested arboviruses.

Model analysis of antibody response

Sex, age, and interaction effects on serostatus. The generalized linear model indicated

that there was a weak statistical interaction between the effects of sex and age on serostatus for

DENV4 (Deviance [Df. = 2; Res.Df. = 1274] = 5.44; p = 0.066) and USUV (Deviance [Df. = 2;

Fig 2. Correlation of the serostatus response between the tested arboviruses with a dendrogram of hierarchical clustering.

Symbols in lower triangle represent significance of correlation, values in upper triangle, including diagonal line, represents the number

of positive individuals for the corresponding arboviruses.

https://doi.org/10.1371/journal.pntd.0012233.g002
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Res.Df. = 1274] = 7.72; p = 0.021). For the other tested arboviruses, no support for a statistical

interaction was detected, the interaction was thus removed from those models. In the case of

RVFV, no statistical support was found for an effect of sex, age, or the interaction on the seros-

tatus. All results from generalized linear model’s analysis of variance are reported in S2 Table.

The analysis of the sex variable showed a moderate support for males having a lower sero-

prevalence compared to females for DENV2 (Est. males ± SE = -0.665 ± 0.242; p = 0.006) and

WSLV (Est. males ± SE = -1.446 ± 0.483; p = 0.003). A weak statistical effect of a lower seroprev-

alence in males compared to females was detected in ZIKV (Est. males ± SE = -0.643 ± 0.386;

p = 0.096), TBEV (Est. males ± SE = -1.103 ± 0.635; p = 0.083), CCHFV (Est. males ± SE =

-0.821 ± 0.460; p = 0.074) and CHIKV (Est. males ± SE = -0.633 ± 0.296; p = 0.032). There was

no support for a difference in seroprevalence between males and females for RVFV (Est. males

± SE = 0.097 ± 0.381; p = 0.798), YFV (Est. males ± SE = 0.425 ± 0.413; p = 0.304), DENV1 (Est.

males ± SE = -0.377 ± 0.248; p = 0.129), DENV3 (Est. males ± SE = -17.43 ± 2021.76; p = 0.993),

WNV (Est. males ± SE = -0.009 ± 0.397; p = 0.982), MAYV (Est. males ± SE = -1.222 ± 1.080;

p = 0.258) and ONNV (Est. males ± SE = -17.75 ± 1663.70; p = 0.991).

The analysis of the age variable showed a strong statistical support for a higher seropreva-

lence in subadults than in juveniles for DENV1 and DENV2, a moderate support for CHIKV

and a weak support for YFV, ZIKV, TBEV, WSLV and CCHFV. There was no support for a

difference in subadult and juvenile seroprevalence in the other tested arboviruses. A signifi-

cantly higher seroprevalence in adults compared to juveniles was shown for ZIKV, DENV1,

DENV2, WSLV and CHIKV with a strong support. A moderate support for a higher seroprev-

alence in adults than in juveniles was detected for YFV and CCHFV. Adults showed a weak

statistical support for a higher seroprevalence in contrast to juveniles for WNV and TBEV. All

other tested arboviruses showed no support for a statistical difference between adults and juve-

niles. The comparison between subadults and adults showed a strongly supported statistical

difference for DENV1 and CHIKV with a higher seroprevalence in adults. A moderate support

for a higher seroprevalence in adults compared to subadults was detected for ZIKV and

CCHFV. Yellow Fever virus, WNV, WSLV and ONNV showed a weak support for a statisti-

cally higher seroprevalence in adults than in subadults. The other arboviruses showed no sta-

tistically significant difference between adults and subadults. See Table 3 for estimates,

standard errors, and p-values.

In the case of DENV4, there was a weak support for an interaction between the effects of

age and sex: the analysis showed that there was a strong statistical support for a higher sero-

prevalence in female adults compared to female juveniles (Est. female—adult ±
SE = 1.844 ± 0.486; p< 0.001). A moderate support was shown for a higher seroprevalence in

female subadults compared to female juveniles (Est. female—subadult ± SE = 1.379 ± 0.517;

p = 0.008) and a weak support for a higher seroprevalence in female adults compared to male

adults (Est. female—adult ± SE = 1.898 ± 0.736; p = 0.010). For USUV the model analysis with a

weak interaction, showed that there was weak statistical support for a higher seroprevalence in

female adults compared to female subadults (Est. female—adult ± SE = 0.868 ± 0.345; p = 0.012)

and also a weak support for a higher seroprevalence in female adults compared to male adults

(Est. female—adult ± SE = 1.515 ± 0.612; p = 0.013).

Fig 3 displays the seroprevalence for the six distinct levels (two levels of sex and three levels

of age) for all tested arboviruses, with statistical support lines based on the log odds.

Discussion

In this study, we optimized a high-throughput multiplex immunoassay for the simultaneous

detection of IgG antibodies against 15 medically relevant arboviruses and used it to investigate
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the potential ofM. natalensis to serve as a host for arboviruses. Besides the high throughput

and multiplexing possibility, bead-based Luminex assays come with several other advantages,

such as the small sample volumes required for testing, the compatibility with diverse sample

types, incl. eluted DBS, the cost-effectiveness with lower reagent cost and reduced labor time, a

broad dynamic range for accurate quantification, a reduced variability as a result of running

multiple analytes in a single assay, and the versatility and flexibility of customizable panels. We

describe the screening results of an archived set of wildM. natalensisDBS samples. Our results

revealed an overall seroprevalence of 24% against the entire panel of tested antigens. Virus

family-specific seroprevalences were approximately 2.6%, 20%, 2.8% and 7% for respectively

Bunyaviridae, Flaviviridae, Nairoviridae and Togaviridae. We further found that female

rodents were more likely to be classified as antibody positive for eight of the 15 tested arbovi-

ruses. Additionally, positivity increased significantly with age for almost all tested arboviruses.

The lack of realistic natural positive controls limits the possibility to calculate the assay’s

sensitivity and determine a true cutoff, we therefore used recaptured seroconverted individuals

to determine a cutoff value. The use of antibody titers at multiple time points are a standard

practice to determine antibody or pathogen development and (sero)conversions in human

studies [76]. However, multiple samples of an individual animal across time are often impossi-

ble or very difficult in wildlife studies. Our study is unique in that regard that we have mea-

surements of individual recapturedM. natalensis. We consider that our cutoff based on

seroconverted individuals is a good proxy for the natural cutoff value, since it is based on simi-

lar methods as in human studies [76]. We tried to show in our analysis that the tested mathe-

matical methods could approximate this calculated cutoff and thus provide a method for

future studies that do not have access to recaptured seroconverted wildlife samples. Unfortu-

nately, the tested cutoff methods did not significantly approximate the seroprevalence accord-

ing to the cutoff using samples from recaptures. The negative control-based cutoff (i.e., the

mean plus three times the standard deviation of the negative control samples) gave unrealistic

high seroprevalences. This can be explained by the fact that the negative control samples origi-

nate from a breeding colony and could thus also not be used to determine the assay’s

Table 3. Difference in coefficient estimate on logit scale between the age levels with standard error (SE).

Juvenile—Subadult Juvenile—Adult Subadult—Adult

Estimate ± SE p-value Estimate ± SE p-value Estimate ± SE p-value

RVFV -0.227 ± 0.480 0.637 -0.649 ± 0.446 0.146 -0.422 ± 0.421 0.316

YFV -1.368 ± 0.794 0.085 -2.197 ± 0.757 0.004 -0.829 ± 0.449 0.065

ZIKV -1.349 ± 0.656 0.040 -2.308 ± 0.611 < 0.001 -0.959 ± 0.365 0.009

DENV1 -1.610 ± 0.456 < 0.001 -2.468 ± 0.434 < 0.001 -0.858 ± 0.243 < 0.001

DENV2 -1.551 ± 0.356 < 0.001 -1.780 ± 0.352 < 0.001 -0.229 ± 0.221 0.301

DENV3 -16.47 ± 2176.65 0.994 -18.14 ± 2176.65 0.993 -1.665 ± 1.073 0.121

WNV 0.007 ± 0.582 0.991 -1.20 ± 0.477 0.012 -1.207 ± 0.480 0.012

TBEV -1.855 ± 1.083 0.087 -2.566 ± 1.039 0.014 -0.711 ± 0.499 0.155

WSLV -0.960 ± 0.539 0.075 -1.656 ± 0.492 < 0.001 -0.697 ± 0.357 0.051

CCHFV -1.999 ± 1.072 0.062 -3.321 ± 1.021 0.001 -1.321 ± 0.434 0.002

CHIKV -2.267 ± 0.749 0.002 -3.474 ± 0.723 < 0.001 -1.207 ± 0.283 < 0.001

MAYV 0.642 ± 1.228 0.601 -0.807 ± 0.844 0.339 -1.449 ± 1.104 0.189

ONNV -17.05 ± 1747.82 0.992 -18.15 ± 1747.82 0.992 -1.099 ± 0.641 0.087

Data originates from the pairwise comparison of the age class variables of the generalized linear model. P-values marked in bold have at least a weak statistical support

(p< 0.1).

https://doi.org/10.1371/journal.pntd.0012233.t003
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specificity. These animals have thus never been exposed to a natural environment and the

pathogens that occur in the environment.

The statistical methods vary in their seroprevalence with some methods approximating the

estimated seroprevalence according to the recaptured cutoff. This high degree of variation

makes it difficult to decide on one method that works for all the tested arboviruses. The cutoff

value for CCHFV seems extremely high compared to the other arboviruses, but the unit values

for CCHFV are also much higher than for the other arboviruses (see S1 Fig). The reason is that

the unit values are calculated based on the positive dilution series and the positive controls for

CCHFV were not of the same magnitude as for the other arboviruses. The value in

Fig 3. Seroprevalence according to sex and age combinations with 95% confidence error bars for each arbovirus.

Statistical support on seroprevalence difference is indicated by asterisks in the horizontal lines. Sample size: 660

females of which 256 juveniles, 172 subadults and 232 adult and 620 males with 199 juveniles, 313 subadults and 108

adults. Sample sizes for ONNV are 560 females: 150 juveniles, 150 subadults, 260 adults and 266 males: 94 juveniles, 92

subadults and 80 adults.

https://doi.org/10.1371/journal.pntd.0012233.g003
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determining a cutoff and the resulting seroprevalence is that it allows the comparison of results

with previous and future studies on arbovirus seroprevalence in rodents or other wildlife. We

are aware that the used cutoff and resulting seroprevalences could be an over- or underestima-

tion and might not reflect the natural arbovirus seroprevalence. We therefore encourage future

research to investigate and compare different cutoff methods for arbovirus (or pathogen) anti-

body detection in wildlife studies.

The detection of antibodies against each of 15 tested arbovirus antigens indicates that these

arboviruses, or closely related viruses, are present inM. natalensis. The overall arbovirus sero-

prevalence of 24% suggests that this rodent species is commonly infected with one or more

arboviruses and that it could thus play a significant role in virus transmission and persistence.

Our results corroborate previous studies, which detected USUV and WNV RNA in respec-

tivelyM. natalensis andM. erythroleucus, in Senegal [24,54]. Besides in this genus, arboviral

RNA has also been found in other rodents in Africa, such as Rattus rattus for USUV and

WSLV and Desmodillus auricularis for WSLV [22,24,53]. The findings in our study thus fur-

ther corroborate that arboviruses are likely present in rodents, and specifically in the ubiqui-

tousM. natalensis. The demographic and ecological characteristics ofM. natalensismay have

particularly important implications for arbovirus transmission. The population densities ofM.

natalensis in Tanzania are strongly dependent on weather conditions. More specifically, early

rainfall and elevated temperatures lead to an exponential growth in the population density,

due to an increase influx of juveniles [29,30,32]. The rainfall and increased temperatures are

also beneficial for the breeding of mosquitoes and the multiplication of arboviruses within

these vectors [82]. Further,M. natalensis is highly abundant around houses and in the crop

fields at the fringes of the villages. These factors increase the likelihood of arbovirus outbreaks

inM. natalensis populations, with the possibility of spillover to humans.

Arboviruses that show the highest seroprevalence are DENV1, DENV2, DENV4 and

CHIKV, with seroprevalences between five to nine percent. These seroprevalences could be

caused by cross-reactivity due to antibodies of other dengue virus serotypes or other flavivi-

ruses binding to the non-structural protein 1 (NS1 protein) of DENV1, DENV2 and DENV4.

The same effect could also be true for alphaviruses binding to the envelope protein 2 (E2 pro-

tein) of CHIKV. Whether these seroprevalences are indeed due to the presence of the arbovi-

rus specific antibodies or a related arbovirus remains to be investigated. Nonetheless, it

indicates that a part of the sampledM. natalensis population in Morogoro is exposed to dengue

virus and CHIKV or respectively to a related flavivirus and alphavirus. This hypothesis is sup-

ported by the fact that flavi- and alphaviruses are the most prevalent arboviral genera in

humans, compared to other arbovirus genera, and potentially thus also in rodents involved in

the sylvatic cycle [83,84].

A recent health survey has shown that, in our samples’ region of origin, a high percentage

of the human population is seropositive for CHIKV (9.83%) [55]. Another study in the same

region reported acute infection of CHIKV in 1.28% of patients with fever and malaria-like

symptoms [85]. Although these studies have not found any indication of dengue virus in

humans, a large-scale cross-sectional study in Tanzania has found CHIKV and dengue virus

antibodies in respectively 28.0% and 16.1% of the population [56]. These studies clearly indi-

cate that the human population in Tanzania is exposed to arboviruses and then specifically to

CHIKV and DENV.

The cross-reactivity analysis via the correlation matrix and hierarchical clustering (Fig 2)

showed an antibody response correlation between WSLV–USUV (59%), DENV2 –DENV4

(56%) and DENV1 –CHIKV (50%). We expected that phylogenetically related arboviruses

would show elevated levels of correlation due to cross-reactivity [86]. A remarkable result in

this cross-reactivity analysis is that DENV1 –CHIKV cluster together with a correlation of
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50%, based on the serostatus of the tested samples. The branch DENV1/CHIKV clusters also

closer to ONNV than to the branches of WSLV/USUV and DENV2/DENV4. This is unex-

pected since CHIKV belongs to the Togaviridae and DENV1 to the Flaviviridae [87]. The pro-

teins used for the antibody detection are also two different proteins, with the E2 protein used

for the Togaviridae and NS1 protein for the Flaviviridae, thus limiting the possibility of cross-

reactivity. Although we cannot exclude that there might be similar epitopes between the differ-

ent proteins, other studies have already indicated that cross-reactivity between the E2 protein

of the Togaviridae and NS1 protein of the Flaviviridae is limited [88,89]. The residue identity

between the two proteins is also less then 13% according to the amino acid alignment algo-

rithm of Geneious Prime. Given that both Togaviridae and Flaviviridae viruses are circulating

in humans in East Africa, we hypothesize that these viral families may also both be present in

rodents [5,10]. More specifically, it is plausible that both viral families could be found inM.

natalensis, where pathogen co-infections are common [49]. This hypothesis is further sup-

ported by the fact that some viruses in both families are transmitted by the same arthropod

vectors, such as Aedes aegypti and Aedes albopictus for both dengue virus and CHIKV [4,82].

For some of the tested arboviruses, we found statistical support for a higher seroprevalence

in females than in males. This result is supported by previous studies where it is shown that

female mice have a stronger innate immune response than male mice [90]. In other animals

(e.g., birds, fish, insects) as well as humans, females also display stronger immune responses

[91–95]. The major driving forces behind these immune differences are genetic (i.e., X-chro-

mosome-linked) and hormonal (i.e., different estrogen and testosterone levels) [96]. In the

case ofM. natalensis, behavioral differences could also be the cause for this divergence in sero-

prevalence. Previous studies have already shown that home range, behavior and pathogen

presence differ between male and femaleM. natalensis [48,97]. These inherent sex differences

in sensitivity to infections could influence the seroprevalence, where the calculated cutoff

value could be an over or under estimation for a particular sex. However, since our sample size

of males (N = 620) and females (N = 660) is approximately the same this influence was consid-

ered to be insignificant. Besides the sex effects, we also found statistical support for a positive

age effect on the presence of antibodies in some of the tested arboviruses. This increased sero-

prevalence with age corroborates previous findings for other pathogens (i.e., Bartonella sp.,

Anaplasma sp., helminths, and arenaviruses) [48,49,98]. This age effect further supports our

hypothesis thatM. natalensis is exposed to arboviruses and that individuals develop antibodies

and gain immunity via repeated exposures throughout their life. To maintain the arbovirus

transmission in theM. natalensis population, there needs to be a proportion of the population

that is either chronically infected or immunologically naïve. Chronic infections inM. natalen-
sis have already been documented for mammarenaviruses [31,99]. However, as far as we are

aware, naturally occurring chronic arbovirus infections have not been reported in humans or

non-human vertebrates. Therefore, the presumable driving factor in sustained transmission is

the presence of immunologically naïve individuals. During the breeding season, which coin-

cides with increased rainfall and temperature, there is an influx of immunologically naïve juve-

niles. This influx can reach high proportions during population outbreak periods [30,64]. We

thus expect that it is juveniles who are the major factor in sustaining the arbovirus transmis-

sion cycle. We predict that the prevalence of arboviral genetic material will be higher in juve-

niles than in adults, since juveniles do not possess the necessary antibodies to fight of the

infection.

We conclude from our detected antibody responses that arboviruses, or related viruses, are

present inM. natalensis in Morogoro, Tanzania. The higher seroprevalence we detect in

females can be explained by genetic, hormonal, ecological and/or behavioral differences

between sexes. Individuals are exposed to these viruses throughout their life and gain
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immunity as they age. We hypothesize that juvenileM. natalensis play an essential role in sus-

taining arbovirus transmission as they are immunologically naïve and can reach high densities

in favorable climate conditions that coincide with optimal vector conditions. More extensive

screening, such as virus neutralization tests and molecular screening of these viruses withinM.

natalensis are necessary to quantify the contribution of this rodent species in the arbovirus

transmission cycle.
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27. Hánová A, Konečný A, Mikula O, Bryjová A, Šumbera R, Bryja J. Diversity, distribution, and evolutionary

history of the most studied African rodents, multimammate mice of the genus Mastomys: An overview

after a quarter of century of using DNA sequencing. Journal of Zoological Systematics and Evolutionary

Research 2021; 59:2500–18.

28. Chidodo S, Kilawe C, Mnyone L, Vanden Broecke B, Mulungu L. Factors affecting the composition of

rodent assemblages in the North Uluguru Mountains, Tanzania. J Vertebr Biol 2020; 69. https://doi.org/

10.25225/jvb.20047

29. Leirs H, Verhagen R, Verheyen W. The basis of reproductive seasonally in Mastomys rats (Rodentia:

Muridae) in Tanzania. J Trop Ecol 1994; 10:55–66.

30. Sluydts V, Crespin L, Davis S, Lima M, Leirs H. Survival and maturation rates of the African rodent,

Mastomys natalensis: Density-dependence and rainfall. Integr Zool 2007; 2:220–32. https://doi.org/10.

1111/j.1749-4877.2007.00065.x PMID: 21396039
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