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H I G H L I G H T S
c We built a spatially explicit and individual-based SEIR model of Mopeia virus.
c Sharp density thresholds are observed for persistence, not invasion.
c Host dispersal is important for the spread and persistence of the infection.
c In the year following invasion, herd immunity can hinder persistence.
c The model is most sensitive to transmission rate and infectious period.
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a b s t r a c t

Well-established theoretical models predict host density thresholds for invasion and persistence of

parasites with a density-dependent transmission. Studying such thresholds in reality, however, is not

obvious because it requires long-term data for several fluctuating populations of different size. We

developed a spatially explicit and individual-based SEIR model of Mopeia virus in multimammate mice

Mastomys natalensis. This is an interesting model system for studying abundance thresholds because the

host is the most common African rodent, populations fluctuate considerably and the virus is closely

related to Lassa virus but non-pathogenic to humans so can be studied safely in the field. The simulations

show that, while host density clearly is important, sharp thresholds are only to be expected for persistence

(and not for invasion), since at short time-spans (as during invasion), stochasticity is determining. Besides

host density, also the spatial extent of the host population is important. We observe the repeated local

occurrence of herd immunity, leading to a decrease in transmission of the virus, while even a limited

amount of dispersal can have a strong influence in spreading and re-igniting the transmission. The model

is most sensitive to the duration of the infectious stage, the size of the home range and the transmission

coefficient, so these are important factors to determine experimentally in the future.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The driving force behind all infectious diseases is the trans-
mission of parasites from an infected to a susceptible host (Begon
et al., 2002). Sometimes direct contact between individuals is
required for transmission, but also indirect contact (e.g. through
contaminated excreta) can be sufficient. When the contact rate
between hosts is constant, for example due to social rules, the
ll rights reserved.

sity of Antwerp, Laboratory

-2610 Antwerpen, Belgium.

s),

ns@ua.ac.be (B. Borremans),
transmission is called ‘frequency-dependent’. When the contact
rate between hosts increases at higher population densities, the
transmission rate is ‘density-dependent’ (Begon et al., 2002;
Lloyd-Smith et al., 2004, 2005; Keeling and Rohani, 2007). In
the latter case, theoretical models predict that there exists a host
abundance threshold, which is the minimum number of host
individuals needed for an infection to spread in a population
(Kermack and McKendrick, 1927).

The nature of the abundance threshold depends on the situation,
and two different thresholds can be discerned (Deredec and
Courchamp, 2003; Lloyd-Smith et al., 2005). When an infectious
agent enters a naive (uninfected and wholly susceptible) population,
the density of hosts should be high enough to ensure sufficient
contacts between individuals during which transmission can take
place. This is then called an invasion threshold (Deredec and
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Courchamp, 2003; Lloyd-Smith et al., 2005). When an infection is
already present in a population, persistence will depend on the
capacity of the population to produce a sufficient supply of new
susceptible individuals, through birth or immigration. Thus, while
invasion and persistence thresholds are part of the same concept,
they are not completely equivalent (Deredec and Courchamp, 2003;
Lloyd-Smith et al., 2005).

In general, human populations do not vary extensively in time,
and consequently, these concepts have been hard to demonstrate
for human infections (but see critical community size in measles,
Bartlett, 1960; Nåsell, 2005; also mass vaccinations aiming at
herd immunity are based on the same principle). However,
wildlife populations often exhibit larger fluctuations, in which
case such thresholds are more likely to be crossed. Periods during
which a pathogen can invade, spread and (temporarily) persist,
are then interrupted by periods below the threshold, when the
pathogen can no longer invade or persist. One example of such an
abundance threshold over time can be seen for plague in popula-
tions of great gerbils in Kazakhstan (Davis et al., 2004).

In this paper, we study the infection dynamics of Mopeia virus
(an East African arenavirus) in its natural host the multimammate
mouse (Mastomys natalensis). This is an interesting model system
for studying epidemiological abundance thresholds, for several
reasons. Mopeia virus transmission is thought to be density
dependent because the home ranges of its host overlap more at
higher densities (Monadjem and Perrin, 1998), so the existence of
an abundance threshold is to be expected. Next, because the host
populations exhibit large (seasonal as well as interannual) popu-
lation fluctuations (ranging from o50 to 600 animals per hectare
in the same year Leirs et al., 1997), this threshold is likely to be
crossed regularly. Additionally, M. natalensis is one of the most
common African small mammals and an agricultural pest, and as
such, its ecology and demography have been studied extensively
(e.g. Leirs, 1994). Last, because Mopeia virus is not known to
cause disease in humans but is very closely related to the West
African Lassa virus (which causes Lassa fever, a severe hemor-
rhagic fever in humans and thus difficult to study, but with the
same rodent species as natural host), insights into Mopeia virus
transmission can be used to better understand Lassa virus
epidemiology.

As a first step in studying Mopeia virus dynamics, we here
develop an individual-based SEIR model to simulate the infection
dynamics. Using the current best estimates of the model para-
meters, the model should be able to tell us if abundance thresh-
olds are to be expected and in which situations. Moreover, as not
all epidemiological parameters have been determined experimen-
tally, this model can give important insights into the relative
importance of the different transmission parameters in the infec-
tion dynamics. This should provide a more reliable foundation for
future studies and a guide as to which parameters are more
important to be determined experimentally and to what detail.
2. Model

To simulate the spread of Mopeia virus infection, we built an
individual-based spatially explicit SEIR model, taking into account
demography, spatial behaviour of the host, and the infection
dynamics of Mopeia virus. Birth, death, dispersal and the transi-
tions between infection stages are applied stochastically on
individual hosts, because the host population can be small and/
or the numbers of infected mice can be low. We did not alter the
demographic and spatial components after infection, because no
overt signs of disease were observed after Lassa virus infection
(Walker et al., 1975; Günther and Lenz, 2004).
2.1. Demographic component

In the course of a year, M. natalensis shows strong population
size fluctuations. These are due to seasonal reproduction, which is
driven by seasonal rainfall (May until July, Leirs et al., 1997).
Because it is to be expected that the population density greatly
influences the infection transmission, it is important to include
demography in the model. We include two maturation stages:
juvenile and adult, which are governed by the demographic
processes of birth, maturation and death, as outlined below.

Birth: Reproduction rates (n) between 0.044 and 0.3 births per
day per adult have been observed (Leirs, 1994; Leirs et al., 1997).
In the model, an average birth rate of 0.172 mice/day is assumed
during the breeding season. Only female adults can reproduce,
and the birth rate is adjusted accordingly (n¼ 0:344 mice=day).
Empirical data have shown that litter sizes are smaller at high
densities (Leirs et al., 1997). This density dependence was found
to differ between seasons (in reality, some litters are raised
outside the breeding season), and is smallest in the reproductive
season. For this reason, we do not include this in the model. The
litter size was taken to be 11, i.e., the average litter size in
Morogoro (11.31, in Leirs, 1994). At birth, the pups are randomly
assigned to a sex.

Maturation: In years with a normal rain pattern, the juveniles
undergo a long period of reduced growth in the dry season.
Because of this, reproduction is postponed until the next breeding
season (Leirs et al., 1993, 1997). This delay in the maturation is
included in the model.

Death: The mortality of M. natalensis was found to be density
dependent: at low population densities (below a critical density
of 150 mice/ha), the mortality rate (m) was measured to be
0.0104 mice/day; at higher population densities (well above
150 mice/ha), m was found to be 0.0158 mice/day (Leirs et al.,
1997). In the model, the density-dependent mortality was imple-
mented in the same way, using the above mortality rates,
separated by a critical density C. Due to the increased mortality
above the critical density C, the population density will level off
quickly above C and for this reason, in the following, we refer to C
as the carrying capacity. This method, albeit unconventional, has
the advantage that it mimics the empirical data and that
it allows to change the population density using a single
parameter C. Different habitats can sustain a different number
of mice (depending on food availability, soil type, etc., Borremans
et al., 2011), and therefore, in the analysis we will not restrict
ourselves to the experimentally measured C¼150 mice/ha and
vary C to study the effect of the carrying capacity of the habitat on
the infection dynamics. It proved necessary though, to lower the
overall mortality by 30% in order to adjust it to the birth rate, so
that the population would not fade out. This is due to the fact that
the experimentally determined mortality rates were somewhat
overestimated, because they were inferred from the mice’s pre-
sence in an open grid of 1 ha, not taking into account emigration
as a possible alternative to death when animals disappear from
the grid.
2.2. Spatial component

The M. natalensis individuals in the simulations are bound to
their home burrow. While foraging, an individual moves through
the landscape around his burrow, covering only a small area of
the total focus. This home range size was estimated by Leirs
(590 m2 for females and 598 m2 for males, Leirs, 1994; Leirs et al.,
1996) and Monadjem and Perrin (1998, 652 m2 for females and
718 m2 for males). Due to this limited home range, contacts
between individuals cannot be described using a random mixing



Fig. 1. The risk of contact with virus from one infectious neighbour via direct

contact (solid line) or indirect contact (dotted line).
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assumption and it is necessary to include the spatial behaviour of
multimammate mice in the model.

In the model, every animal has a home burrow, represented by
coordinates on a grid that remain fixed most of the year. We
model the daily movement of an individual by a diffusive motion
in a circular symmetric quadratic attractive potential, centered
round its burrow (Abramson et al., 2006). The solution of the
diffusive equation in such a potential is a two-dimensional Gauss
distribution (Worton, 1989; Seaman and Powell, 1996; Abramson
et al., 2006; Wilkinson, 2006)
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. In the model, the width of

the kernel was chosen to be s¼ 4:77 m, so that the home range
covers 95% of all movements (Shchipanov and Lyapina, 2008).
Note that we assume that all animals, irrespective of their age or
sex, have the same home range size (Leirs, 1994; Leirs et al., 1996;
Monadjem and Perrin, 1998).

When a female adult in the model gives birth, its offspring
adopts the coordinates of its mother. The mice stay in the same
burrow until the dispersal season starts. From October until
December, the mice start searching for new places to settle. In
this period, monthly 24% of the population displaces its home
range (Leirs, 1994) by an average distance of 300 m (dispersal is
not clearly sexbiased in M. natalensis, Leirs, 1994; Van Hooft et al.,
2008). In the model this displacement was included by randomly
selecting dispersing animals, which were shifted a fixed distance
of 300 m in a random direction. When an individual ends up
outside the grid, it is placed on the grid as if it underwent an
elastic collision with the edge of the grid. By doing so, the
modeled grid represents a closed system of, for example, a patch
of suitable habitat in an unsuitable matrix.

2.3. Infection component

In our model, we discern four different stages of infection:
susceptible (S), exposed (E), infected (I), and recovered (R). In the
following, we describe the serial transition along the chain of
different infection stages.

S-E

The transmission mechanisms of Mopeia virus in M. natalensis

are not fully known yet, but some information can be obtained
from related viruses. Direct transmission (e.g. by sexual contacts,
grooming or fights) is an important transmission mode for many
arenaviruses (Jay et al., 2005), and it is likely that Lassa virus
(which is closely related to Mopeia virus) can be passed on
indirectly by aerosols (in urine, saliva or faeces) (Walker et al.,
1975; Peters et al., 1987). Some preliminary infection experi-
ments were conducted (unpublished data), and they showed that
animals can indeed become infected through indirect transmis-
sion with contaminated environment. So, both indirect and direct
transmission are possible routes, but their relative importance is
still unknown.

However, this will turn out to be of little importance for
modeling the infection dynamics, as it will prove out that they
can be modeled in the same way, because of the short survival
time of the virus outside the host. But first we focus on modeling
transmission through direct contact.

The rate at which a susceptible mouse j becomes infected by
an infectious mouse i is proportional to their contact rate. M.

natalensis is thought to be nonterritorial (Veenstra, 1957; Leirs
et al., 1996), so the overlap of home ranges will increase with
density (Monadjem and Perrin, 1998). This overlap will determine
to what extent neighbouring animals interact with each other.
Hence, the contact rate, in turn, is proportional to the spatial
overlap Oði,jÞ between the pdf’s of both animals, which can be
rewritten as
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since the convolution of two Gaussian functions is again a
Gaussian function, but now with summed variance. As the contact
rate is proportional to the spatial overlap, the contact rate equals
cOði,jÞ, with c a constant rate. The rate c at which a susceptible
individual becomes infected, is then given by

cðjÞ ¼ n
X

i

cOði,jÞ ¼ b
X

i

Oði,jÞ, ð6Þ

where the sum is over all infected animals i, and where n entails
the probability for successful virus transmission during an
encounter. Both unknown parameters n and c can be contained
within a single transmission coefficient b¼ nc.

For indirect transmission, the virus passes via contaminated
ground. Once an infected animal becomes infectious, it starts
shedding virus into its surroundings, and, as time goes by, the
amount of virus in its surroundings will increase until it reaches a
plateau. Indeed, the virus has a rather short survival time (the
viral load of Lassa virus decreases by 90% in 58.2 h; Sagripanti
et al., 2010), and decays in the soil, leading to a very quick
saturation of the contamination load (Fig. 1). Because of this
rather short virus survival time, the ‘memory’ of the ground is
rather short compared to the infectious period (see below), and
the indirect transmission can be modeled, to good approximation,
as a transmission through direct contact. The amount of local
ground contamination depends on the spatial behaviour of the
mouse, and therefore the ground contamination will have the
same distribution as the mouse probability distribution function,
i.e., it is proportional to Kað r

!
Þ.

In the model, the b-value captures the virus transmission
coefficient, be it direct or indirect via ground contamination. This
value is unknown, but we estimated this phenomenological
variable using the observations of Borremans et al. (2011). They
observed antibody prevalences of Mopeia virus of 13% for
populations of M. natalensis in Tanzania in the dispersal season.
We ran the simulations for a range of b-values, and chose
b¼ 125 m2=mouse=day, as this value resulted in an antibody
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prevalence of 13% in the dispersal season. Because this is still a
rough estimate, b will be examined in a sensitivity analysis.

Note that, when calculated on a grid, the current approach with
the Gaussian kernel speeds up the calculation significantly, since
the calculation of the infection rate (matrix c), is in fact a
convolution of the matrix of the number of infected mice in each
of the grid cells, Nið r

!
Þ, with the above overlap function, see Eq. (5),

i.e., a two dimensional Gaussian kernel. The determining factor for
the grid size is the width of the overlap function: the grid size
should be small enough to capture the Gaussian shape. Therefore, in
the simulations, a grid size of 5 mðo

ffiffiffi
2
p

s) was used.

E-I

After an experimental infection of guinea pigs with Lassa virus,
virus titers reached a more or less constant phase around day
7 after inoculation in salivary glands, kidney and lungs (Jahrling
et al., 1982). Since these organs are probable to be responsible for
the virus shedding (in salivation, urine, and aerosols), we use an
average exposed (latent) period of 7 days, which corresponds to a
transition rate of x¼ 0:14 mice=day.

I-R

In the infection experiments of Walker et al. (1975) on M.

natalensis, Lassa virus disappeared from the liver between days 12
and 29, from the lungs between days 29 and 58 and from the
spleen between days 58 and 103. Lacking specific data for Mopeia
virus, we assume a similar average infectious period of 60 days,
resulting in a transition rate g¼ 0:017 mice=day.

A list of all the parameters used in the model is given in
Table 1.

2.4. Simulation setup

Every simulation is started at the end of the reproductive season,
with a population size equal to the carrying capacity. The indivi-
duals are distributed randomly on a square grid. In the middle of
the first dispersal season, the infection is introduced in the popula-
tion by infecting a single individual in the center of the patch. This
is the most likely time for (infected) individuals to immigrate the
patch, but another introduction moment would not alter the long
term persistence or infection dynamics after invasion. The simula-
tion is then run until the infection fades out, with a maximum
simulation time of 10 years. Each simulation was run 6000 times or
more, until stochastic fluctuations became small.

2.5. Invasion and persistence

Because of the strong annual seasonality of M. natalensis, and
for easy interpretation, virus presence is inspected in discrete
time steps of 1 year. For every year t, we calculate, from the
Table 1
List of the parameters used in the simulations.

Parameter

Demographic component Birth rate

Death rate below carrying capacity

Death rate above carrying capacity

Litter size

Spatial component Length grid cell

Radius home range

Dispersal distance

Monthly dispersal percentage in the dis

Infection component Rate of E–I transition

Rate of I–R transition

Transmission coefficient
ensemble of simulations, the probability that the infection sur-
vives until the next year tþ1, which we denote as pðtþ19tÞ (note
that we consider the survival of the infection, not of single
viruses). The probability for the infection to exist at year T, is
then given by

pðTÞ ¼
Yt ¼ T�1

t ¼ 0

pðtþ19tÞ: ð7Þ

This annual survival probability pðtþ19tÞ of the infection will change
over time. Indeed, immediately after the initial infection, the infection
survival probability is very much determined by this initial condition,
i.e., the fact that the infection is limited in size, localized in the center
of the patch. As time goes by and the infection does not disappear, it
will spread to more distant parts of the patch, and consequently, the
effects of the initial boundary condition are lifted, so that, eventually,
the probability for the infection to survive no longer changes over
time. We will study the dynamics of this varying annual survival
probability and make a rough distinction between invasion and
persistence. The invasion probability is the probability pI ¼ pð190Þ
that the infection survives the first year in the population, i.e., this
initial infection succeeded in invading the population. The persistence
probability pP is the probability that the infection, after invading and
spreading throughout the patch, persists until the next year. In this
case, the annual survival probability has converged to a fixed value
pP ¼ limt-1pðtþ19tÞ.

In case the virus has successfully invaded the population
(pI¼1), the above equation can be approximated by

pðTÞ � pT
P ð8Þ

pðTÞ ¼ elogðpP Þ�T , ð9Þ

and consequently, the mean duration of persistence is then given
by TP ¼�1=½logðpPÞ�.
3. Results

3.1. Course of infection

The typical course of a Mopeia virus infection is shown in Fig. 2 for
a single simulation. In the reproductive season, the number of newly
infected mice (E) increases. Subsequently, also the number of
infectious individuals (I) increases. After the reproductive period,
the number of infected mice decreases until the start of the dispersal
season. In this dispersal season there is a second peak in the number
of infected mice. The maximum number of infected mice is usually
smaller than in the reproductive period, but, because of the lower
population size, the antibody prevalence is still high. Sometimes, the
persistence of the infection depends on only very few infected mice.
This is for example the case around day 2000 in Fig. 2.
Symbol Value

n 0.031 mice/day

m 0.0073 mice/day

m 0.0111 mice/day

11 mice

5 m

14.3 m

d 300 m

persal season f 24%

x 0.14 mice/day

g 0.017 mice/day

b 125 m2/mouse/day



Fig. 2. The results for a single simulation of a patch of 30 ha with a carrying

capacity of 100 mice/ha. The number of susceptibles and total population size are

shown at the top (a). In the middle (b) the numbers of mice in the latent,

infectious and recovered stage are shown. The prevalence of mice with antibodies

(in the infectious or recovered phase) is shown at the bottom (c). The reproductive

seasons are indicated in dark grey, the dispersal periods in light grey.

Fig. 3. The annual survival probability pðtþ19tÞ is plotted as a function of the

carrying capacity C, for patch sizes of 1, 5, 10 and 30 ha. The results are shown for

the first 4 years of the simulations.

Fig. 4. The mean duration of persistence is plotted as a function of the carrying

capacity C for patches of 1, 5, 10, 30, 50 and 100 ha.
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3.2. Annual survival probability

The annual survival probability, pðtþ19tÞ, is shown in Fig. 3 for
patch sizes of 1, 5, 10 and 30 ha. The carrying capacity in our
model ranges between 5 and 200 mice/ha. In reality, even higher
population densities are observed (Leirs et al., 1997). Only the
data of the first 4 years are shown.

For the invasion probability pI ¼ pð190Þ, it is clear that pI

increases as a function of the carrying capacity C for all patch
sizes. The invasion probability pI is lowest in case of the 1 ha
patch, increases with increasing patch size, to converge already at
a patch size of 10 ha. Indeed, the invasion probability curves are
identical in Fig. 3(c) and (d).

The probability to survive year t¼1, 2, 3 also increases with
increasing carrying capacity C, apart from pð291Þ in Fig. 3(b) and (c).
For the 5 and 10 ha patch sizes, for higher C-values, pð291Þ
decreases for increasing C. pð291Þ is well below the invasion
probability curve in case of the 1 ha patch; for the other patches,
the opposite is true and pð291Þ4pð190Þ. The annual survival
probability increases with increasing t, to converge at the persis-
tence probability pP. The larger the patch, the higher pP and the
longer it takes to converge.

3.3. Mean duration of persistence

In Fig. 4, the mean duration of persistence (or mean time to
fade out) TP is plotted as a function of the carrying capacity for
patch sizes of 1, 5, 10, 30, 50 and 100 ha. The mean duration of
persistence increases with increasing C, but in a patch of 1 ha, TP

is always very low (lower than 1 year). As the patch size increases,
TP increases, especially for higher C-values, and the larger the
patch, the more persistence is governed by a threshold based on
the carrying capacity C.

3.4. Sensitivity analysis

Because the model parameters are not known precisely, the
sensitivity of the invasion and persistence probabilities to the
transmission coefficient b, the transition rates x and g, the
monthly dispersal rate f, the dispersal distance d and the home
range kernel s are tested. The results are shown in Fig. 5 for
patches of 1 ha (a, b) and 30 ha (c, d). Each of these parameters is
increased separately by 30% and 12 000 simulations are run in
which the infection is still present after the first year. The results
show that the I–R transition rate g has a large effect on invasion
and persistence, in both patch sizes: a shorter infectious phase
(1=g) leads to a lower annual survival probability of the infection.
The home range kernel s has an equally large (but positive) effect,
except during persistence in the 1 ha patch. At high carrying
capacities, a larger home range has a small negative effect on
persistence probability in the smallest patch. A 30% increase of
the transmission coefficient b increases the annual survival
probability during invasion, while it has no influence during
persistence. The same increase of x only causes a minor increase
in annual survival probability during invasion in the 30 ha patch.
Increases in the dispersal rate f or the dispersal distance d do not
change the annual survival probability, during invasion nor
during persistence in either of the patch sizes.



Fig. 5. The annual survival probability during invasion and persistence is plotted as

a function of the carrying capacity C for the model without changes as well as for

models with a 30% increase in the transmission coefficient b, E–I transition rate x,

I–R transition rate g and monthly dispersal percentage f, dispersal distance d and the

home range kernel s. The simulated patch sizes are 1 ha (a, b) and 30 ha (c, d).
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4. Discussion

The pattern that comes out of the model most clearly, is that
each year two infection waves occur. The first wave, during and
right after the reproductive season, can be explained by the inflow
of newborns. This enhances the infection spreading in two ways:
through an increase in the number of susceptible hosts and
through a higher host density, enhancing transmission. After this
wave, the number of infected animals again decreases because of
a local depletion of susceptible animals. During the dispersal
period, the second wave follows as a result of the movement of
infected hosts away from sites where susceptible animals are
depleted locally, to areas where the proportion of susceptibles is
higher due to the absence of infection or the disappearance of
previous infections. This effect of host movement on seasonality
and spread of infectious diseases was also found by Grassly and
Fraser (2006) and White et al. (2000). Indeed, dispersal is an
important process for infection spread and persistence, and Jesse
and Heesterbeek (2011) showed that its effect depends on the
distance hosts disperse. Because the population is already
decreasing during the second infection wave, the infection pre-
valence is highest during this period. Such a relationship between
density and prevalence was not found in an empirical study about
Lassa virus in Guinea (Fichet-Calvet et al., 2008). However, these
West African M. natalensis populations only fluctuate slightly
(factor two at most, Fichet-Calvet et al., 2008), while in East
Africa, population fluctuations from 20 to 500 multimammate
mice per hectare within a couple of months are common (Leirs
et al., 1997; Sluydts et al., 2007).

The invasion probability rises with increasing carrying capa-
cities. This can be attributed to the density dependent nature of
the virus transmission (Davis et al., 2005). As more mice can be
sustained on patches with a higher carrying capacity, infected
animals are more likely to encounter a susceptible animal, which
increases the spreading potential of the virus. There is however an
important influence of patch size. In small patches (e.g. 1 ha,
Fig. 3) the invasion probability is lower than in larger patches due
to a depletion of susceptible animals, causing the infection to
disappear more easily. In contrast, in larger patches (45 ha) the
invasion probability is rather independent of the patch size,
because the number of susceptible animals does not become
low enough to hamper transmission.

In general, the survival probability of an infection in the
second year (after a successful invasion) is higher than during
the invasion period (Fig. 3(b), (c)), and increases even further in
the following years for big patches (Z30 ha). This can be
explained by the higher number of infectious animals at the start
of the second year compared to the first year, which increases the
probability of successfully transmitting the infection. This process
continues for several years in larger patches (Z30 ha), because
the yearly travel distance of the infection is limited. For the
smallest patches however, this reasoning no longer holds, because
the proportion of immune (recovered) individuals becomes too
high, which causes the population to reach a state of herd
immunity, and therefore the probability for the infection to
disappear increases after the first year (Fig. 3(a)). The same holds
for medium sized patches when the virus is transmitted excep-
tionally rapid during the first reproductive season because of high
carrying capacities (Fig. 3(b), (c)). This causes a lack of susceptible
(and infectious) mice at the beginning of the second year, which
we observe as a decline of pð291Þ at high C in Fig. 3(b) and (c). In
later years, the new infections are spread more evenly throughout
the year, so the annual survival probability stabilizes.

Theoretical compartmental models using coupled differential
equations and assuming random mixing clearly show abrupt
thresholds at R0 ¼ 1 (the basic reproductive ratio, Heesterbeek,
2002). Hence, due to the density dependent nature of the virus
transmission, classical theory predicts abrupt threshold behaviour
as a function of the carrying capacity. When trying to use more
realistic models however (stochastic and non-random mixing as in
our case), it is known that such thresholds can get strongly blurred
(Lloyd-Smith et al., 2005), which makes it more difficult to define a
threshold and to prove its presence. (Indeed, the ‘abruptness’ of a
threshold is always relative to the dynamic range of the indepen-
dent variable, in this case, to the changes of the carrying capacity
that occur in the field). Therefore, in our case, we do not see abrupt
thresholds. In case of invasion – which is particularly prone to
stochasticity due to the limited number of initially infected – there
is no abrupt threshold, but rather a continuous transition. In case of
persistence, threshold behaviour is more apparent for larger patch
sizes (10 and 30 ha): we see a steep increase in the persistence
probability within a limited density range (of about 60 and
110 animals/ha in the 10 ha patch and about 40 and 90 animals/
ha in the 30 ha patch (Fig. 3)). For the smaller patches, this pattern –
a steep increase of the persistence probability – is less obvious
(5 ha) or seems to totally disappear (1 ha).

So far, we have looked at thresholds on the survival probability
at the 1-year level, but thresholds manifest themselves more clearly
on longer timescales. Indeed, the probability to persist for a certain
period of time will be a steeper function of the carrying capacity
(and hence more threshold-like) as the time to persist increases. For
this reason, it is useful to study the infection dynamics on a longer
time scale, and therefore, we look at the mean duration of
persistence (or the mean time to fade out), which can be derived
from the persistence probability. Here, the threshold behaviour for
patch sizes above 10 ha, which was already visible in the persis-
tence probability curve, is more distinct, with a threshold carrying
capacity somewhere between 70 and 90 animals/ha.

The sensitivity analysis shows that the role of the transmission
parameters is not the same for invasion and persistence. The invasion
probability is more sensitive to the transmission coefficient b,



J. Goyens et al. / Journal of Theoretical Biology 317 (2013) 55–61 61
compared to the persistence probability. A higher rate of virus
transmission increases the likelihood of surviving the first year,
but as soon as the infection has successfully settled in a popula-
tion, the infection is less sensitive to changes in the transmission
coefficient. The 30% change of the latent period does not have a
strong influence on persistence probability, although the invasion
probability in the 30 ha patch is slightly higher for shorter latent
periods. The shorter the latent period, the faster the infection will
spread, which is especially beneficial for infection survival in the
first year. For persistence in the following years, this is of less
importance, because the infection is well established in the patch,
and there are more infected animals that can spread the virus. The
infectious period does have a strong influence, for invasion as well
as persistence in both patch sizes. A shorter infectious period
strongly decreases the invasion and persistence probabilities,
because infected individuals can infect less animals, thereby
increasing the probability of infection fade-out. An increased
home range on the other hand strongly increases the possible
number of contacts between animals, resulting in an increased
invasion probability in both patch sizes. In the 30 ha patch, a
larger home range has the same positive effect on persistence
probability, while in the 1 ha patch it only has a small negative
effect at the highest carrying capacities. The latter is due to the
same mechanism described earlier to explain the role of patch
size: a larger home range creates infection opportunities for a
higher number of animals, thereby increasing the proportion of
recovered mice, which in turn decreases the persistence prob-
ability (herd immunity) in very small patches. The monthly
dispersal percentage does not seem to significantly change the
annual survival probability. Although dispersion obviously influ-
ences the number of infections (Fig. 2), a 30% increase in the
number of dispersing hosts barely changes the invasion or
persistence capacity. In other words, a low percentage of disper-
sing hosts positively influences transmission, while it seems that
as soon as a sufficient number of hosts disperse, a further increase
in the number of dispersing animals does not necessarily result in
a higher invasion or persistence probability. The same is true for
dispersal distance: as long as the distance is larger than the
minimum distance needed to reach new areas containing suscep-
tibles, dispersal distance does not strongly influence invasion and
persistence probabilities.

Aside from investigating the existence and nature of abun-
dance thresholds, the purpose of this simulation model was the
identification of parameters that exert a strong influence on
transmission. The findings of our model, i.e. the importance of
the infectious period and the transmission coefficient, and the
possible existence of abundance thresholds, can guide future and
ongoing experimental studies on Mopeia virus transmission.
Taking the extensive existing knowledge on the population
dynamics of its host into account, our results suggest that the
Mopeia virus-multimammate mouse system can be of high value
for thoroughly understanding the transmission of a rodent-borne
infection, and in particular for testing hypotheses regarding the
role of population density for virus invasion and persistence.
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