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Abstract
Diseases of humans and wildlife are typically tracked and studied through incidence, the

number of new infections per time unit. Estimating incidence is not without difficulties, as

asymptomatic infections, low sampling intervals and low sample sizes can introduce large

estimation errors. After infection, biomarkers such as antibodies or pathogens often change

predictably over time, and this temporal pattern can contain information about the time since

infection that could improve incidence estimation. Antibody level and avidity have been used

to estimate time since infection and to recreate incidence, but the errors on these estimates

using currently existing methods are generally large. Using a semi-parametric model in a

Bayesian framework, we introduce a method that allows the use of multiple sources of infor-

mation (such as antibody level, pathogen presence in different organs, individual age, sea-

son) for estimating individual time since infection. When sufficient background data are

available, this method can greatly improve incidence estimation, which we show using are-

navirus infection in multimammate mice as a test case. The method performs well, especially

compared to the situation in which seroconversion events between sampling sessions are

the main data source. The possibility to implement several sources of information allows the

use of data that are in many cases already available, which means that existing incidence

data can be improved without the need for additional sampling efforts or laboratory assays.

Author Summary

Human and wildlife diseases can be tracked by looking at incidence, which is the number
of new infections per time unit (typically day, week or month). While theoretically this
would only be a matter of counting the number of newly infected individuals, in reality
these data are difficult to acquire due to limited sampling possibilities and undetectable
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cases. This means that a method must be used to estimate the real incidence using a lim-
ited amount of data. For many infections, the concentration and quality of antibodies
changes predictably over time, which means that one could use the antibody level at any
point in time to back-calculate how much time passed since the infection entered the
body. Other information, such as the age of the individual, or the presence of the pathogen,
can also help to estimate when an individual became infected. Improving on existing
methods, we developed a method that allows the use of a wide range of information
sources for estimating individual time since infection. Using arenavirus infection in mice,
we show that this method works well when sufficient background data are available, and
that it can greatly improve the estimation of incidence patterns.

This is a PLOS Computational BiologyMethods paper.

Introduction
Infection incidence (the number of new infections per time unit) is a basic epidemiological
measure that describes the transmission of an infection through time. Because the exact time at
which an individual acquired an infection is difficult to assess, time of symptom onset is often
used as a proxy (e.g. [1]). When the time between the moment of infection and symptom onset
(the incubation period) is predictable, this proxy will not bias results, but incidence estimation
does become problematic with asymptomatic infection or when incubation periods vary
unpredictably [2].

Another common problem for measuring incidence is the time resolution of data, as the
temporal precision of incidence is directly related to that of data “sampling”. Ideally, each new
infection is detected and recorded immediately, but in reality this is rarely possible and new
cases are often recorded at irregular intervals and a low number of time points, resulting in sub-
optimal resolution incidence data [3, 4]. Even more importantly, when sampling intervals are
larger than the duration of symptoms, a proportion of cases will be missed. This problem is
especially common in the case of wildlife diseases, as natural populations are often sampled
incompletely and at relatively large intervals [5]. In such cases, indirect measures of incidence
that rely on evidence of past infection are needed.

The presence of specific antibodies indicates whether an individual has previously been
infected, and the distribution of different antibody (Ab) types (e.g. IgG, IgM, IgA) can give a
rough indication of how recently the individual was infected [6–9]. If individuals in a popula-
tion are sampled repeatedly, a seroconversion event in between two sampling events provides
further information about the time since infection. Aside from being present or not, Abs vary
over time in quantity (titer) and quality (avidity). On the condition that this temporal variation
is sufficiently constant and predictable within and between individuals, these antibody
dynamic properties can be used for a more accurate estimation of the time since infection.

Avidity (Ab-antigen bond strength) tends to increase with time since infection, which
means that it can in some cases be used to back-calculate the time since infection. But although
this method is used routinely, e.g. for human cytomegalovirus [10, 11], its sensitivity is low,
and it can only differentiate between “recent” or “old” (e.g. less or more than 90 days since
infection for cytomegalovirus) infection events [6, 12].

Estimating Time of Infection Using Prior Information
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Temporal dynamics of Ab levels can be another source of information about time since infec-
tion. In such cases a model must be created that describes the course of Ab levels (titers) over
time since infection using known serological response data. This model is then used to back-cal-
culate, given an Ab titer, the time since infection, which in turn can be used for incidence esti-
mation. This has been done for pertussis [13, 14], HIV [15, 16] and Salmonella [17, 18].

While this method is promising, significant improvements are still possible in two main
ways. A common, important limitation for developing good time since infection models is the
lack of detailed information about individual Ab dynamics, which limits the explanatory
power of such models as they must in that case be estimated using cross-sectional instead of
individual data (e.g. [18]). Experimental challenge studies, in which the exact time since infec-
tion is known, would be needed to describe and model the within-individual Ab dynamics
needed to calculate time since infection, but these are notoriously difficult to conduct [19]. A
perhaps more feasible approach to improving time since infection models would be to make
optimal use of all available sources of information on the course of infection. While changes in
Ab presence/titer over time can contain much information on time since infection and are the
most obvious input data, additional information is contained in parameters such as the pres-
ence/quantity of the pathogen (or of other immune response markers), individual age (e.g. for
typical childhood infections, young individuals are more likely to have been infected recently
than older ones) or season (e.g. for seasonal infections, individuals are more likely to have been
infected recently during or short after the peak transmission season).

Here, we present a novel method that allows the integration of multiple serological biomark-
ers (Ab presence/absence/titer, pathogen presence/absence) as well as additional prior knowl-
edge (e.g. age, season, capture probability) to inform a semi-parametric mixed model that
back-calculates the time since infection of each individual, in a Bayesian framework. The inte-
gration of multiple sources of information ensures the optimal use of data that are often already
available but not yet taken into account.

We apply this method to estimate the incidence of Morogoro virus (MORV) infection in
Natal multimammate mice (Mastomys natalensis). This model system is used because the epi-
demiological and demographic parameters necessary for testing this method are well known
for this infection. MORV is a member of the arenaviruses, a family of zoonotic viruses that
includes viruses able to cause hemorrhagic fever in humans after acquiring infection from wild
rodents (e.g. Lassa virus (LASV), Junin virus, Machupo virus) [20]. It is restricted to East-
Africa, and while it does not seem to cause disease in humans it is closely related to Lassa virus
which causes Lassa hemorrhagic fever in West-Africa, and with which it shares the same host
species. Because both the population ecology of the rodent hostM. natalensis and the infection
ecology of MORV have been studied thoroughly (driven by the host’s status as an agricultural
pest species and the virus’ close resemblance to LASV) [21, 22], MORV infection provides a
good model system for testing the current method.

As is the case for other time since infection methods, two types of datasets are needed to
estimate incidence. A first dataset, consisting of any type of data that contains information on
the temporal course of infection (e.g. Ab titer dynamics in an infected individual), is used once
in order to create an integrated model of individual time since infection. Once created, this
model can be used to estimate incidence from cross-sectional sampling data that ideally (but
not necessarily) includes repeated measures of individuals.

We use a wildlife disease model system to develop and test the method because detailed
individual-level infection/antibody dynamics are available, but also to show that the method is
applicable to both human and wildlife infections. Because it is usually difficult to monitor
infections at a high time-resolution, this method can provide a way to improve the quality of
longitudinal data without having to increase sampling efforts.

Estimating Time of Infection Using Prior Information
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Methods
In the following, we show how different types of data (e.g. levels, presence/absence) can be
used to estimate the time of infection, and as a proof of principle we apply the method to
MORV transmission in the multimammate mouseM. natalensis. For each type of data we pres-
ent a generalised method and immediately apply it to MORV, and we show how to use individ-
ual estimates of the time of infection to estimate incidence in the population. Finally, through
the use of simulated MORV transmission data we investigate method performance under dif-
ferent conditions.

MORV Ab level dynamics and virus presence in blood and excretions (urine, feces, saliva)
have been quantified previously in a challenge study, described in [23], where multimammate
mice from a breeding colony were injected with cultured MORV and sampled frequently for
210 days, which is more than their average lifetime in natural conditions (Fig 1 and [23]).

Back-Calculation Model
Bayes’ rule. In the following, we assume that an individual can be encountered at different

times, at which it can be tested for different types of information: Ab level, pathogen presence,
age, body weight, sex, etc. For each measurement type k, the experimental information for a

single individual can be represented by a vector Xk ¼ ½xk1; xk2; :::; xkn�, of which the different
coordinates represent the responses that have been measured at times T = [t1, t2, . . ., tn] for a
particular individual.

Decoding the information about the individual time of infection θ from these experimental
data Xk essentially comes down to the calculation of P(θ|Xk, T), which is the probability that,
given the information Xk measured at times T, the tested individual was infected at time θ. In
order to calculate P(θ|Xk(T), T), we make use of Bayes’ Rule to arrive at

PðyjXk;TÞ ¼ PðTÞ
PðXk;TÞ PðX

kjT; yÞPðyjTÞ: ð1Þ

Both the numerator and denominator of the first factor are independent of θ, and conse-
quently this fraction can be inferred from the fact that

R
P(θ|Xk, T)dt = 1. Calculating the poste-

rior probability P(θ|Xk, T) is then reduced to the calculation of P(Xk|T, θ), i.e. the likelihood
that a time of infection θ produces the information Xk at times T, and P(θ|T), i.e. the prior for θ
if we assume that the individual was encountered at times T. In the following, we describe how
to model P(Xk|T, θ) and P(θ|T) using different sources of information.

Modeling P(Xk|T, θ)
The estimation of the time of infection θ can be based on different dimensions of the immune
response that each require a slightly different approach. In the following we consider two dif-
ferent sources of information.

Using level information. In a situation where the level of a measured biomarker (e.g. Ab
or pathogen levels in blood) exhibits predictable temporal variation we can extract information
on the time since infection from the measured level [18]. For example, in the particular case of
MORV, Fig 1 clearly shows that the Ab-level contains information about the time since
infection.

First, let us consider the case of a single level xki where we have to determine Pðxki jti;yÞ, i.e.
the conditional probability of measuring level xki if the individual was infected at time θ and
tested at time ti. As is clear from the data shown in Fig 1, a particular value of the time since
infection ti − θ does not necessarily result in a single possible biomarker level due to variation

Estimating Time of Infection Using Prior Information
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caused by inherent measurement errors, temporal variation and/or individual differences. The
measured level xki at time ti can be written as

xki ¼ Lðti � yÞ þ di; ð2Þ

di � N ð0; sðti � yÞÞ; ð3Þ

i.e. the mean level corresponding to a time since infection, L(ti − θ), plus an ‘error’ δi. This
model and the error distribution are system-specific, and can take any empirical form as long
as it adequately describes the course of the biomarker over time. It is typically derived from
experimental infection data. Here, we assume that the error is normally distributed, with a vari-
ance σ that may be dependent on the time since infection ti − θ, because this is probably a com-
mon situation. Using these approximations, we arrive at the following conditional probability
for a single level measurement:

Pðxki jti;yÞ ¼
1ffiffiffiffiffiffi

2p
p

sðti � yÞ exp � 1

2½sðti � yÞ�2 xki � Lðti � yÞ� �2( )
; ð4Þ

with ti − θ the time since infection.
This model describes the conditional probability based on a single measurement, but one

often has more information on the evolution of the levels, since an individual may be encoun-
tered and tested at different times. In this case, the temporal level information is contained
within a vector Xk of which the different coordinates represent the responses measured at
times T. If we again consider the individual to have been infected at time t, Eqs 2 and 3 can be

Fig 1. Temporal variation of antibody levels obtained from experimental data [23] for 15 different
individuals (a) and for all individuals combined (red dots) with fitted function mean and standard
deviation (blue lines) (b).

doi:10.1371/journal.pcbi.1004882.g001
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generalized to

Xk ¼ LðT� yÞ þ δ; ð5Þ

δ � N ð0;ΣÞ; ð6Þ

with the covariance matrix S over all n times the individual was tested, and δ a n − dimensional
vector drawn from a multivariate normal distribution. Finally, this results in

PðXkjT; yÞ ¼ 1

ð2pÞn=2jΣj1=2

� exp � 1

2
½Xk � LðT� yÞ�TΣ�1½Xk � LðT� yÞ�

� �
:

The covariance matrix would typically be inferred from experimental data and accounts for
the possible interdependence of level responses at different times. Indeed, the error δ of differ-
ent measurements may not be independent over time. Also, it is possible that part of the vari-
ance is caused by individual differences, i.e., δ = δind + δnoise, as some individuals may have a
stronger immune response (higher overall levels) than others.

Applied to MORV: Ab level. We apply this to MORV by considering information about
one Ab (IgG) measurement, shown in Fig 1. First, in order to arrive at errors that can be ade-
quately described by a normal distribution, we take the logarithm of the Ab level. Next, we esti-
mate L(t) by fitting a smooth spline to the data to arrive at the curve shown in Fig 1b.

Then, we subtract the corresponding L-value from each datapoint and calculate to what
extent individual variation and temporal variation account for the variance observed in the
residual errors, as this would then have to be taken into account in the covariance matrix.
Using an ANOVA, we found no significant effect of individual (p = 0.085) or time (p = 0.089)
on the variation of the residual errors. Based on the sum of squares, the relative contributions
to the total variance were estimated to be 1.3% for time and 9.6% for individual. From this anal-
ysis, we find that the effects of individual and time can be ignored, compared to the residual
variance, and consequently we consider the covariance matrix to be proportional to the unitary
matrix, σ2 I, independent of t. All off-diagonal elements are assumed zero. The residual stan-
dard deviation was measured to be σ = 0.99 and approximated to 1.

Note that although we here estimate L(t) using a spline method and with the assumption
that there is no individual or temporal effect on variation, P(Xk|T, θ) can be modeled using any
method, as long as the model adequately describes the data. Indeed, an alternative to using a
spline method is to use a mechanistic model, and an alternative to determine the appropriate
covariance structure is to use a hierarchical modelling approach in which likelihood theory is
used to test the contribution of the different sources of variability (see e.g. [17, 18, 24]).

Using presence/absence information. Often, information on presence/absence of bio-
markers is more easily available than level data. This can be due to biomarker assay limitations,
because level variability of the measured biomarker is too high and unpredictable, or because
the levels do not change sufficiently over time. In such situations, it may be possible to use pres-
ence (xki ¼ 1) or absence (xki ¼ 0) of a biomarker (e.g. IgG, IgM, virus), often measured using
assays that result in values above or below a detection threshold. Given that an individual was
infected at time θ, the probability of biomarker presence or absence xki at time ti is given by

Pðxki jti; yÞ ¼ xki 2pðti � yÞ � 1½ � þ ½1� pðti � yÞ�;

which would typically be derived from experimental infection data.

Estimating Time of Infection Using Prior Information
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In the case of multiple (n) measurements, presence/absence data are contained in a vector Xk,
with nmeasurements ½xk1; xk2; :::; xkn�, where xkn is the n-th measurement indicating presence (1) or
absence (0). Assuming that measurements at different times are independent, we can write

PðXkjT; yÞ ¼
Yn
i¼1

Pðxki jti; yÞ: ð7Þ

Applied to MORV: Ab presence. Usually in epidemiology only information about Ab
presence or absence (seroconversion events) is used to estimate the time since infection, result-
ing in incidence estimates with low temporal resolution [25, 26]. Here, we use that situation as
a reference, in order to evaluate the improvements offered by using Ab level instead of only
presence/absence data.

When only considering Ab presence, the measurement xabi is a binary variable of which the
value depends on whether Ab was present (1) or absent (0) at time ti. The probability p

ab(t) of
detecting Ab in blood if an animal was infected at t = 0 is then given by

pabðt � 6Þ ¼ 0

pabðt > 6Þ ¼ 1;

as it was found that Ab are never present before day 7 after infection [23]. After this initial
period, we assume the test to be sensitive enough to detect Ab presence with a probability of 1
(Fig 1).

Applied to MORV: Virus presence in blood. Based on experimental data, the probability
pvb(t) to detect virus in blood (Vb) if an animal was infected at t = 0 can be adequately modeled
by

pvbðt � 1Þ ¼ 0

pvbð1 < t � 8Þ ¼ 1

pvbðt > 8Þ ¼ exp½�0:3ðt � 8Þ�;

as shown in Fig 2a.
Applied to MORV: Virus presence in excretions. Similar to using information on Vb,

another source of information is the presence/absence of virus in excretions (Ve; urine, saliva
or feces). Based on the experimental data shown in Fig 2b, we model the probability pve(t) to
detect Ve if an animal was infected at t = 0 as

pveðt � 2Þ ¼ 0

pveð2 < t � 12Þ ¼ ðt � 2Þ=20
pveð12 < t � 45Þ ¼ ð45� tÞ=66

pveðt > 45Þ ¼ 0:

Combined biomarker information. After modeling all biomarkers of interest, the sepa-
rate models can easily be combined into one conditional probability of the time of infection
that incorporates information about different biomarkers, including levels (or presence/
absence) of different antibodies (e.g. IgG, IgM, . . .), pathogen (e.g. virus, bacteria) concentra-
tion (or presence/absence), and in different tissues (blood, excretions, organs, . . .). One should
keep in mind that the errors, levels or presence of some of the different sources can be corre-
lated, which should be taken into account in the covariance matrix.

Estimating Time of Infection Using Prior Information
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If we assume N independent sources of information, we can combine these by simple multi-
plication of their respective conditional probabilities to arrive at

PðXjT; yÞ ¼
YN
k¼1

PðXkjT; yÞ; ð8Þ

where k runs over N different sources of information. The resulting conditional probability can
then be inserted into Eq 1.

Modeling P(θ|T)
Because an individual can of course only have been infected when it was alive and present in
the population, the estimation of θ can be improved by incorporating prior information about
the probability of an individual being alive/present, i.e. by modeling P(θ|T). Here, we show
how to implement information on mortality rate and maximum life span, age at the time of
sampling, and encounter probability, but note that any source of information can be used in a
similar way as long as it results in a realistic prior distribution.

Knowledge about the maximum life span can be informative because it sets an upper
boundary to the possible time since infection, and is especially useful in situations where the
maximum life span is short relative to the possible time since infection. If an individual was last
tested at time tn and the maximum life span is known, then the prior distribution P(θ|T) can be
reduced to

PðyjTÞ � 1

life span
y > ðtn � life spanÞ½ � y < tn½ �;

with [.< .] is a boolean operator that returns 1 or 0 when the equality is true or false, as shown
in Fig 3a.

Similarly, one could make use of the mortality rate, as this is directly associated with the
possible age of an individual. If an individual was first encountered at time t1 and we assume a
mortality rate γ as inferred from data, we arrive at prior distribution

PðyjTÞ � max exp ðgðy� t1ÞÞ; 1½ � y < tn½ �;

Fig 2. Probability of virus presence in blood (a) and excretions (b), estimated from experimental data
[23]. Detection probability is given by the proportion of tested individuals that was RNA-positive on a given
sampling day.

doi:10.1371/journal.pcbi.1004882.g002

Estimating Time of Infection Using Prior Information
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as shown in Fig 3b. This figure clearly shows that, due to mortality, it becomes increasingly
unlikely for individuals to have been alive, and therefore infected, further in the past.

When more precise information exists on the age of an individual focus individual (which is
trivial for humans, while for wild animals this can be based on physiological or morphological
features such as weight), this can be taken into account explicitly by including

PðyjTÞ � y > ðt1 � ageðt1ÞÞ½ � y < tn½ �;

if the individual was first encountered at time t1, see Fig 3c.
More applicable to wildlife infections is the use of encounter probability (typically termed

trapping or capture probability, but for consistency and human application we will here refer
to it as encounter probability). In a typical capture-mark-recapture study, only a proportion of
individual is captured during each session, and well-developed methods exist for estimating
encounter probability [27, 28]. This encounter probability can be used to estimate the likeli-
hood of an individual being alive at a certain point in time, assuming a closed population dur-
ing that time (no migration). If an individual is first encountered at time t1, the probability of it
being born at time θ decreases with t1 − θ, as it becomes increasingly unlikely that it was not
encountered during (t1 − θ) / Δt trapping sessions.

If we estimate encounter probability penc for every trapping session, this information can be
used to further improve the prior time distribution:

PðyjTÞ � max½ð1� pencÞðt1�yÞ=Dt
; 1�½y < tn�

� max exp penc
ðy� t1Þ

Dt

� �
; 1

� �
½y < tn�;

Fig 3. Example of the possible use of information about maximum life span (a), mortality rate (b) and
individual age (c). The three dots on the time axis indicate the different times at which a hypothetical
individual was sampled. The red blocks indicate the probability of being alive at a certain point back in time,
which can be included as prior information on the estimated time of infection.

doi:10.1371/journal.pcbi.1004882.g003
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where Δt is the sampling or trapping interval time, and with the latter approximation valid
only when penc <<1. This approach only holds if one can assume a closed population where
every individual was in the population during its lifetime and the effects of migration are
negligible.

One could also use seasonal information or cross-sectional data to inform the prior P(θ|T),
or in fact any other data source that contains any type of information about the time since
infection.

Decision Criterion
Given the resulting posterior probability P(θ|X, T), the observer still has to use a decision crite-
rion to decide which time of infection θ is most likely. Probably the most obvious decision cri-

terion is the mean squared error (MSE) of the time since infection by selecting the by i for which

MSE ¼ 1

Nind

XNind

1¼1

byðiÞ � yðiÞ
h i2

;

with i running over a population of Nind individuals, is minimal. It can be shown that this is the

case for by ¼ R
dyPðyjT;XÞ y [29].

In order to assess the quality of the estimates, the remaining uncertainty on the time since
infection can be inspected conditional on the observed data (X, T), which can be quantified
using the conditional entropy E(θ|X, T) [29], i.e.,

EðyjX;TÞ ¼
Z
y0
dy0pðy0jX;TÞ log 2 pðy0jX;TÞ;

where θ0 runs over all possible time since infection values. Conditional entropy is a commonly
used measure in information theory that quantifies (in bits) the remaining amount of uncer-
tainty about the actual value of the quantity of interest (here: time since infection). The highest
entropy is attained for a uniform posterior probability distribution (maximum uncertainty),
whereas the minimum (zero) entropy is obtained when there is no uncertainty left about the
actual value [29]. In an epidemiological context, the entropy value can be used to improve the
reliability of estimated incidence (see next paragraph) by removing all estimates of θ for which
the entropy value is larger than a threshold value. The choice of this threshold value will mostly
depend on the trade-off between sample size and estimation error: a low threshold value will
generally result in a higher quality of the remaining θ estimates, but at the cost of reducing the
final size of the dataset, and will therefore be dataset-specific.

Estimating Incidence
One of the main purposes of knowing the time of infection of an individual is to analyse and
model infection incidence on a population level. To this end, we need to estimate the time of
infection θi for all sampled individuals i in the population and count the number of newly
infecteds on a regular (usually daily) basis. Because in most situations only a proportion of
individuals will be encountered and sampled, the “real” proportion of new infections needs to
be estimated. This can be done by dividing the number of infecteds by an estimate of the pro-
portion of encountered individuals. Given a certain sampling interval Δt and an encounter
probability at each session (penc), this proportion can be approximated by

proportion encountered ¼ g
Z

dt exp ð�gtÞ 1� ð1� pencÞt=Dt
h i

;

Estimating Time of Infection Using Prior Information
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where the integral runs over all the survival times t following an exponential distribution with
1/γ (the average lifespan of an individual in our simulation), t / Δt is the approximate number
of sampling sessions during lifetime t, and (1 − penc)

t/ Δt is the approximate probability that an
individual is never encountered during these sessions.

Application to MORV Infection inM. natalensis
Next, in order to test the back-calculation scheme, we need a dataset of individuals in a popula-
tion, with full knowledge of their infectious status at each moment. Also, to test the efficacy of
the method as a function of sample size (with regard to intervals between sampling sessions as
well as the sampling effort), we need datasets collected under different trapping regimes. We
therefore simulate MORV transmission in a population of multimammate mice, “sampled” in
different trapping sessions, with each individual given simulated infection attribute data based
on the experimentally-derived [23] course of Ab levels and probability of virus presence in
blood and excretions. These simulated data are equivalent to epidemiological data obtained
through surveys with repeated sampling, but now of course with the difference that our simu-
lated data are completely known for testing purposes. All simulated data, as well as the Matlab
code used to apply the time of infection estimation method, can be found in S1 Data.

As input for the model, we use simulated data from an existing individual-based spatially-
explicit SEIR model, which models the population dynamics and the transmission of Morogoro
virus inM. natalensis [30]. In this model, individuals are born in the susceptible (S) state and
can become infected through contact with infectious (I—infectious state) individuals. When
infected, they enter a latent stage (E—exposed state) during which they cannot transmit the
virus, until they become infectious (I) after around 6 days. After around 45 days they stop being
infectious, recover from the infection (R—recovered state) and remain immune against re-infec-
tion for the remainder of their life. Latent and infectious periods were simulated assuming an
exponential distribution. The simulation is run over a total area of 10ha, but in order to recreate
a realistic situation in which individuals can move freely in and out of the study site, only the
individuals that are encountered within a central 5ha area were available for “trapping”. Realistic
population densities and fluctuations are used, ranging between around 10 and 150 per ha.
After a simulation burn-in period, two years of data are considered (from day 1000 until 1730).

Throughout the simulation we keep track of each individual’s age, time since infection t,
and we simulate trapping sessions with a time interval Δt, in which every individual present in
the 5ha area has a probability ptrap to be trapped. Whether an individual is trapped or not is
determined using pseudo random numbers. This way, for every individual we can generate an

artificial set of measurements (T, Xk) that we can then use to estimate the time of infection by.
Xab are random realisations according to the multivariate distribution shown in Eq 8 at times
T. Xvb and Xve are random draws with respective probabilities pvb and pve at times T. We vary
the time intervals between capture sessions using Δt = 1, 7, 14, 28, 56 days, as well as the proba-
bility for each of the individuals to be captured using ptrap 2 (0, 1).

We implement a maximum life span ofM. natalensis of 450 days based on [31]. The average
mortality rate (averaged across the year) is calculated from the simulation data, and estimated
to be μ = 0.008537 mice/day (average life span of 117 days). Both maximum and average life
span are used as prior information for all time of infection estimates.
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Fig 4. Estimation error (
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
) on the time of infection for different encounter probabilities (ptrap) and

for different levels of included prior information (ab: antibody, vb: virus in blood, ve: virus in
excretions, age: individual age); (a) is based on antibody presence/absence, while (b) is based on
antibody levels. The trapping interval was 14 days for all situations.

doi:10.1371/journal.pcbi.1004882.g004

Fig 5. Estimation error (
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
) on the time of infection for different encounter probabilities (ptrap) and

different sampling intervals (Δt) (ab: antibody, vb: virus in blood, ve: virus in excretions, age:
individual age); (a) and (c) are based on antibody presence/absence, while (b) and (d) are based on
antibody levels; (a) and (b) only include antibody information, while (c) and (d) include all available
information. The larger dots on the 28 day line indicate the situation for which incidence plots are shown in
Fig 6.

doi:10.1371/journal.pcbi.1004882.g005
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Results and Discussion

Ab Level vs Presence/Absence, without Additional Information
The estimation of the time since infection is much improved by the use of Ab levels, as opposed
to when only using Ab presence/absence data (Figs 4 and 5). The use of Ab levels also results in
a much better reconstruction of incidence dynamics, even without including additional infor-
mation such as virus presence or individual age (Fig 6). When using Ab presence/absence data,
incidence can only be estimated with a low temporal resolution, the main consequence being
that the peaks and troughs of the incidence dynamics were estimated badly (Fig 6). Although
the incidence peaks are estimated quite well when using Ab levels, the periods of low incidence
are still often over-estimated (Fig 6).

Including Additional Information
The inclusion of additional information (Vb, Ve, individual age) greatly improves the estima-
tion of time since infection and incidence (Figs 4–6). Interestingly, this effect is more pro-
nounced when using Ab presence/absence than when using Ab levels. The combined use of Ab
levels and other available information results in the highest quality reconstruction of incidence
dynamics, where the inclusion of additional information mainly reduces the previously
observed over-estimation of low incidence levels between peaks.

Nevertheless, even when using Ab presence/absence instead of Ab level data, incidence can
be reconstructed well when including Vb, Ve and individual age. This is encouraging, given the
fact that many datasets, especially for wildlife infections, already contain some or all of this
information; it means that by applying the back-calculation method, many existing incidence
estimations can be improved significantly without additional laboratory or sampling efforts.

Sampling Frequency and Encounter Probability
The quality of the estimates strongly depends on sampling frequency (or trapping interval) and
the proportion of individuals that is encountered (or trapped) and sampled. While more addi-
tional prior information always results in a better estimation of the time since infection, we see
that, at low (realistic) encounter probabilities, this effect is strongest (Fig 4). We also observe

Fig 6. Simulated (blue) and estimated (red) incidence using different sources of information; (a) and
(c) are based on antibody presence/absence, while (b) and (d) are based on antibody levels; (a) and
(b) only include antibody information, while (c) and (d) include all available information; (a) represents
the situation that is mostly used in existing studies. Larger dots on Fig 5 (28 day line) indicate the
situation for which incidence plots are shown.

doi:10.1371/journal.pcbi.1004882.g006
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that a higher sampling frequency results in better estimates (Fig 5), and this is largely an effect
of increased sample sizes: when adjusting the trapping probability to equalise sample sizes of
different sampling frequencies, this effect mostly disappears (S1 Fig). This means that, in the-
ory, similar results can be reached for any sampling frequency or trapping interval, but only if
the sampling effort is increased so that a sufficient number of individuals can be sampled. Nev-
ertheless, we observe that long sampling intervals (28–56 days) generally result in lower quality
estimates (S1 Fig), indicating that a shorter interval would still be preferred.

Entropy Threshold
In the model, we introduce the use of entropy (which is inversely related to information) as an
indicator of the amount of uncertainty contained by an estimate. Fig 7 shows how estimates of
the time since infection with a higher deviation from the real time since infection generally also
contain less information (i.e. have a higher entropy). Similarly, we observe a strongly positive
correlation between the MSE of the estimated time of infection and the entropy level (S2 Fig).
Therefore, by removing estimates above a critical entropy value, the MSE can be lowered, albeit
at the cost of a lower sample size. Because of this trade-off it is not possible to suggest an opti-
mal critical entropy cut-off value, which should rather be chosen depending on the specific sit-
uation, sample size and quality of available information.

Model Limitations
Although the model performs well and seems promising for a wide range of situations, there
are a number of important assumptions and prerequisites that must be met before it is possible
to apply the model to data. First, of course, empirical data on the dynamics of biomarkers (e.g.
antibodies, viral RNA, etc) within individuals must be available. These can be relatively
straightforward data such as knowledge about when after infection individuals seroconvert and
how long antibodies remain detectable, or more elaborate information such as the temporal
variation of antibody and virus levels after infection.

Then, these data can only be used if they are sufficiently consistent across individuals. If
there is too much inter-individual variation in the shape of biomarker dynamics, it will not be
possible to predict individual patterns. This does not however mean that there can not be indi-
vidual variation in the magnitude of the response, as this would in fact be easy to implement
into the model.

Fig 7. Difference between the estimated and real time since infection in relation to the entropy level
(bits). Each datapoint is a “sampled” individual.

doi:10.1371/journal.pcbi.1004882.g007
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Further care must be taken if biomarker data have been obtained through laboratory experi-
ments. Because laboratory conditions are often controlled and limited, natural variation in fac-
tors such as individual differences in immune response, stress, secondary infection, initial dose,
boosting, etc. may result in different biomarker dynamics that could invalidate a time since
infection model if they can not be incorporated into the model [32]. Ideally this is tested
through a comparative study between laboratory and field patterns, but if such a study has not
been done we must assume that the patterns observed in laboratory conditions apply to the
natural situation.

Other factors that could render the use of a time since infection model difficult are the exis-
tence of maternal antibodies and the simultaneous presence of chronically and acutely infected
individuals, as these factors would be difficult (but not necessarily impossible) to disentangle
and take into account. On the other hand, under certain conditions these factors may even
improve the model, as they provide additional information; for example, if maternal antibodies
only occur for a certain period in newborn individuals, and if maternal antibodies can be dis-
tinguished from other antibodies (e.g. because of lower levels or using a different assay), this
information can likely improve the estimation of the time since infection when incorporated
into the model.

Model Novelty and Applicability
Under the conditions described here, the model is a significant improvement on existing mod-
els (e.g. [14, 17, 18, 33]). It provides a relatively simple probabilistic framework for the incorpo-
ration of any data source that can inform the estimation of time since infection, such as
biomarker level/presence, age, season, sex, weight, etc., and thus allows for the use of individ-
ual-level data to interpret cross-sectional survey data and estimate population-level incidence.
An important strength of the method is that it does not assume a certain form for the underly-
ing models, which makes it possible to use a general spline method but also a more specific
ordinary differential equation (ODE) method when a good ODE can be found (e.g. [17]).

More specifically for wildlife infections, the method has the potential to enhance existing
long-term data. Often, large logistical efforts are necessary to collect longitudinal data on wild-
life infections, and even the best datasets have a relatively low temporal resolution, typically
consisting of monthly (but often less frequent) capture sessions [5, 34–37]. Prevalence or inci-
dence patterns resulting from such data are usually also limited to this capture frequency, and
to our knowledge the only efforts for improving these data have been the rough estimation of
seroconversion events between two capture sessions (e.g. [38, 39]). We have shown however
that by integrating multiple sources of information (that have often already been collected or
analysed), the quality of incidence data can be greatly improved, especially (but not uniquely)
when predictable antibody level dynamics are available.

Conclusion
Due to its flexibility, the model presented here allows the integration of multiple sources of
information, thus making optimal use of all available data for estimating individual times of
infection and population incidence. It provides a conceptually simple, flexible framework for
estimating the time since infection and incidence of human as well as wildlife infections, and
can potentially be used to significantly improve incidence estimation based on already existing
data.

Estimating Time of Infection Using Prior Information

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004882 May 13, 2016 15 / 18



Supporting Information

S1 Fig. Estimation error (
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
) for different sampling intervals (Δt) and different sample

size corrected encounter probabilities (m) (ab: antibody, vb: virus in blood, ve: virus in
excretions, age: individual age); (a) and (c) are based on ab presence/absence, while (b) and
(d) are based on ab levels; (a) and (b) only include ab information, while (c) and (d) include
all available information. In order to adjust the trapping probability so that the number of
individuals captured during a month is more or less teh same, a constantm was used such that
ptrap = 28�m / Δt, withm [ [1, 20]. Smallerm-values correspond with a lower ptrap but a similar
number of individuals.
(EPS)

S2 Fig. (a): Frequency distribution of entropy values for different levels of additional infor-
mation; (b) Correlation between entropy and the mean absolute difference between esti-
mated and real time since infection. Different lines (a, b, c, d) correspond with the respective
situations in Fig 7 in the main text.
(EPS)

S1 Data. Matlab code and transmission model simulation results. This file contains the
Matlab code used to generate the results in this article, as well as the data. The datafile consists
of 3 matrices, where the columns are the daily model situations (increasing in time from left to
right, starting after a 500-day burn-in period and selected within a 5 ha grid as described in the
methods) and the rows represent all individuals present in the simulation. Empty cells (no indi-
viduals) are indicated by a negative number. The id matrix gives the unique identifier of each
individual, and the corresponding age (in days) and time since infection (in days) values are
given in the two other matrices.
(ZIP)
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